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ABSTRACT
We report spontaneous symmetry breaking (SSB) phenomena in symmetrically charged binary particle systems under planar nanoconfine-
ment with negative dielectric constants. The SSB is triggered solely via the dielectric confinement effect, without any external fields. The
mechanism of SSB is found to be caused by the strong polarization field enhanced by nanoconfinement, giving rise to charge/field oscillations
in the transverse directions. Interestingly, dielectric contrast can even determine the degree of SSB in transverse and longitudinal dimensions,
forming charge-separated interfacial liquids and clusters on square lattices. Furthermore, we analytically show that the formed lattice constant
is determined by the dielectric mismatch and the length scale of confinement, which is validated via molecular dynamics simulations. The
novel broken symmetry mechanism may provide new insights into the study of quasi-2D systems and the design of future nanodevices.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0214523

INTRODUCTION

Quasi-2D systems are attracting much attention because of
their huge potential in future nanodevices. Typically, such sys-
tems possess a nano-sized longitudinal thickness in the z direction,
achieved through confinement, and are bulk-like and modeled as
periodic in the transverse xy directions.1 Rich new collective behav-
iors arise in such systems, to name a few: polyelectrolyte adsorption
and structure,2,3 ion transport, and selectivity.4,5

Nevertheless, in terms of the spontaneous symmetry break-
ing (SSB) phenomenon, much existing study focuses on purely 2D
and 3D systems;6–8 far less is known about quasi-2D. For bulk elec-
trolytes or neutral plasma, it is well-known that the Coulomb poten-
tial can be dynamically screened by surrounding countercharges,
leading to effectively short-range interacting particle systems.9 The
situation becomes very different in quasi-2D charged systems: their
reduced symmetry (i.e., the nano-sized confinement) weakens the
electrostatic screening, and the correlation effect can become much
more important. Clearly, this is quasi-2D specific, where a sim-
plified 2D description would fail. Yet, to the best of our knowl-
edge, no SSB phenomena have been reported in the suspension of

charge- and size-symmetric, overall-neutral particle systems under
dielectric confinement, without any external fields.

Another important effect associated with quasi-2D charged
systems concerns permittivity, i.e., the dielectric confinement effect.
Substrate materials used for nanoscale confinement can range from
dielectric to metallic, and at the present time, electromagnetic meta-
materials have been developed with permittivities that can take
negative values10,11 when excited by electromagnetic waves of spe-
cific frequencies. Great efforts have been made to develop negative
permittivity materials in the low frequency range.12–14 Noteworthy
is that materials with negative static permittivity have drawn con-
siderable attention; although rarely seen, their existence has been
predicted in materials, such as metals and non-ideal plasma.15,16

More recently, it has been experimentally achieved in a wide range
of materials such as VO2 films,17 graphene,18 nanocolloids,19 and
polymeric systems.20 Interestingly, even for water, the perpendicu-
lar component of its tensorial dielectric function has been observed
to be negative within sub-Angstrom distances from the surface by
nanoconfinement.21–23

The confinement effect turns out to be physically interest-
ing even when only a single dielectric substrate is present. For
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electrolytes/polymers near a single dielectric substrate, recent cal-
culations have revealed that the dielectric surface effect can signif-
icantly deviate the systems from bulk behaviors. Examples include
ion transport,24 polymer brush structure,3 and pattern formation in
dipolar films,25 where such an effect is particularly enhanced when
the substrate’s permittivity is negative. Unfortunately, incorporat-
ing a second dielectric substrate into the models to actually achieve
dielectric confinement in computer simulations is far from straight-
forward. Although simulation techniques26–37 have made significant
progress over the past decades, accurate and efficient treatment
of the dielectric confinement effect remains challenging, especially
when the system is strongly confined or substrates have negative
permittivity.

In this work, through computer simulations of a prototypical
charge- and size-symmetric binary mixture of particles described
by the primitive model,38 we demonstrate that broken symmetries
arise spontaneously due to the dielectric confinement effect alone.
Moreover, we discover that the substrate’s permittivity can even
qualitatively alter the degree of SSB in transverse and longitudi-
nal dimensions, forming charge-separated interfacial liquids and
clusters on square lattices. The mechanism of SSB is found to be
caused by the strong polarization field enhanced by dielectric con-
finement, giving rise to charge/field oscillations in the transverse
directions. It is discovered that the formed lattice constant can
be quantitatively determined by the dielectric mismatch and the
length scale of confinement, which is analyzed theoretically and also
validated numerically via molecular dynamics simulations under
various system settings.

MODEL

The modeled geometry of the dielectric confined quasi-2D sys-
tems used for simulations is presented in Fig. 1. The system is
doubly periodic in the transverse direction and finite in the longi-
tudinal direction, with edge lengths of Lx, Ly, and Lz . All charged
particles are located between the dielectric substrates with dielectric
permittivity ε1 and ε2 and are immersed in a solvent with dielec-
tric permittivity ε. Based on the Image Charge Method (ICM), the
strength of polarization is quantified by the dimensionless coeffi-
cient reflection rates, γ1 and γ2, which are given by (ε − εi)/(ε + εi).
The Green’s function of Poisson’s equation in such systems can be
constructed via a multiple reflection process, resulting in an infinite
image charge series as schematically illustrated in Fig. 1. Note that
when ∣γ1γ2∣ ≤ 1, the image reflection series is convergent, but when
∣γ1γ2∣ > 1, it becomes divergent, and the reflective ICM approach
fails. Therefore, current simulation studies in the ∣γ∣ ≥ 1 regime are
limited to a single dielectric substrate.25 However, our new approach
overcomes this divergence issue using a proper renormalization
strategy, allowing us to explore the dielectric confinement effect
in all possible γ regimes, particularly the less explored scenario of
metamaterial substrates with static negative permittivity.

The Green’s function G(r, s) for Poisson’s equation in a
dielectric confined quasi-2D system can be expressed as

−∇ ⋅ [η(r)∇G(r, s)] = 4πδ(r − s), (1)

where r and s denote the target and source locations within the con-
fined geometry, and the relative dielectric function η(r) = ε(r)/ε,

FIG. 1. Figure illustrates a quasi-2D charged system and depicts the dielectric
confinement effect from the viewpoint of the Image Charge Method (ICM). The
solvent medium, with dielectric permittivity ε, is represented by the middle layer,
while the upper and lower layers represent the substrate with dielectric permittiv-
ities of ε1 and ε2, respectively. The real charged particles of the doubly periodic
system are represented by colored circles surrounded by solid lines. The dotted
lines represent the image charges that are reflected by the dielectric interfaces in
the z direction.

where ε(r) is a material-specific, piece-wise constant, defined as

ε(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε1, z > Lz ,

ε, 0 ≤ z ≤ Lz ,

ε2, z < 0,

(2)

and depicted in Fig. 1. Although such homogeneous dielectric con-
stant approximation is a commonly used coarse-grained strategy
in classical molecular dynamics (MD), it should be noted that for
real materials, the dielectric function ε(r) can be spatially varying
with charge concentrations,39,40 wave lengths,15,21 or local electric
fields.41,42 Moreover, for systems under aqueous nanoconfinement,
the dielectric constant of water can become anisotropic and should
be modeled as tensorial near the confinement surfaces.43 Such
dielectric variation effects have been less studied if coupled with
particle-based simulations, but they are important in understanding
physical properties at finer time/length scales.

Finally, the dielectric interface conditions require that G(r, s)
and ε(r)∂zG(r, s) be continuous across z = 0 and Lz , with the free-
space boundary condition (FBC) holding as z → ±∞. It should be
noted that proposing the proper FBC for charges under dielectric
confinement requires careful consideration to ensure it is physi-
cally well-defined, and this will be clarified later. In our discussion,
we fix ε = 1 for simplicity, and ε1 = ε2 = ε′, so that γ1 = γ2 = γ. By
varying ε′, we can change γ from −10 to 10. As a possible experimen-
tal realization, the permittivity of VO2 film in the long wavelength
limit is approximately −14 at 350 K.17 By choosing appropriate
solvents with permittivities of ∼11.4 or 17.1 (such as organic sol-
vents), the proposed γ regimes can be achieved. Note that for general
dielectric confinement setups with realistic dielectric constants, it
is always possible to rescale the dielectric constants by ε and the
confined charge densities by

√
ε, so that the electrostatic system is

mathematically equivalent.
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NUMERICAL METHOD

To solve the long-range Coulomb interaction of quasi-2D
charged systems with dielectric confinement, we proposed the
following method:

First, following the work of Dos Santos et al.,33 plane wave
expansion is applied on both sides of Eq. (1), which gives

G(r, s) = − 1
π∬R2

g(k, z, zs)e−ik⋅Δρ dkx dky

= −∫
+∞

0
2g(k, z, zs)J0(kΔρ)k dk, (3)

where k = (kx, ky) and Δρ = (x − xs, y − ys). For k > 0, by apply-
ing the Dirichlet-to-Neumann map, it can be shown that g(k, z, zs)
satisfies the following 1D boundary value problem:

∂2g(k, z, zs)
∂z2 − k2g(k, z, zs) = δ(z − zs),

ε∂zg(k, Lz , zs) + ε1kg(k, Lz , zs) = 0,
ε∂zg(k, 0, zs) − ε2kg(k, 0, zs) = 0.

(4)

The solution is given as

g(k, z, zs) =
1

2k
1

γ1γ2 exp (−2kLz) − 1

4

∑
i=1

Γle
−kal , (5)

where Γl = [1, γ1, γ2, γ1γ2] and al = [∣z − zs∣, z + zs, 2Lz − (z
+ zs), 2Lz − ∣z − zs∣] ∈ [0, 2Lz]. In addition, for k = 0, the solution is
given by

g(k = 0, z, zs) = −
∣z − zs∣

2
. (6)

Physically, Eq. (6) implies that for k = 0, the confined source charge
acts as a uniformly charged plate.

Then, to efficiently handle the electrostatic interaction, we
develop a novel, modified Ewald splitting technique, which reads

δ(r) = [δ(r) − α
π

e−αρ2

δ(z)] + α
π

e−αρ2

δ(z), (7)

with ρ = (x, y), ρ =
√

x2 + y2, and the choice of α will be determined
by considerations of computational efficiency. Similar to the tradi-
tional Ewald splitting, subtracting and adding the Gaussian cloud
splits the electrostatic interaction into short- and long-range com-
ponents, which now converges, rapidly in real and reciprocal spaces,
respectively. Notice that the splitting strategy we propose here is tai-
lored for the quasi-2D geometry, i.e., it avoids the subtle situation of
a Gaussian charge cloud overlapping the substrates. Due to the split-
ting strategy in Eq. (7), the doubly periodic Green’s function can be
decomposed into short- and long-range components, i.e., G1 and G2,
satisfying

−∇2G1(r, s) = 4π[δ(r − s) − α
π

δ(z − zs)e−αΔρ2

],

−∇2G2(r, s) = 4π
α
π∑m

δ(z − zs)e−αΔρ2
m ,

(8)

where m = (mx, my) ∈ Z2 is the index of doubly periodic images and
Δρm = (x − xs + Lxmx, y − ys + Lymy). Equation (8) can be solved by
convolution of the charge density over g(k, z, zs), which gives

G1(r, s) = −∫
+∞

0
2g(k, z, zs)(1 − e−

k2

4α )J0(kΔρ)kdk,

G2(r, s) = − 4π
LxLy
∑

k
g(k, z, zs)e−

k2

4α eik⋅Δρm.
(9)

Due to our splitting strategy, G1 and G2 decay rapidly in real and
reciprocal space, respectively. Thus, one can simply apply a numeri-
cal cutoff in real and reciprocal space with parameters rc and kc. (For
our numerical scheme and its error estimates, and also details about
the renormalization technique when ∣γ∣ > 1, and efficient imple-
mentation in computing G1,44 one can refer to the supplementary
material.) Finally, the total electrostatic energy can be calculated as

Uele = − ∑
Δρij<rc

qiqj∫
+∞

0
g(k, zi, zj)(1 − e−

k2

4α )J0(kΔρij)kdk

− 2π
LxLy

∑
k<kc

N

∑
i,j=1

qiqjg(k, zi, zj)e−
k2

4α eik⋅Δρij . (10)

OSCILLATORY SINGLE PARTICLE FIELD

The dielectric confinement effect turns out to be physically
fascinating, even in the presence of a single charged particle. In
Fig. 2(a), we present the electric field in the x direction generated by
a cation with valence ν = 1 located at (x0, y0, τ0) in a quasi-2D sys-
tem with a thickness of 10τ0, as a function of the distance from the
cation Δx = x − x0, for different reflection rates γ characterizing the
confinement. The field is defined as −νℓB∂xG(r, r0), where G(r, r0)
is given by Eq. (15), and ℓB = e2

0/(4πε0εkBT) is the Bjerrum length of
the solvent, with e0 being the elementary charge, ε0 being the vacuum
permittivity, kB being the Boltzmann constant, and T being the tem-
perature. For the ∣γ∣ < 1 case, as illustrated by the blue (γ = −0.95)
and orange (γ = 0.95) lines in Fig. 2(a), the polarization weakens or
enhances the bare Coulomb field (γ = 0), but with no qualitative dif-
ference. The results obtained by our method are in good agreement
with those obtained by ICM, shown in dots in Fig. 2(a). However,
for ∣γ∣ > 1, the results become non-trivial and qualitatively differ-
ent. At short distance (τ0 < Δx < 10τ0), we observe from Fig. 2(a) a
continuous transition in the near field interaction from like-charge
attraction (LCA) into repulsion as γ increases from −10 to +10,
which can be understood as a significant enhancement of the polar-
ization effect for ∣γ∣ < 1 cases. Even more interesting is the far field;
it no longer decays monotonically but exhibits oscillatory behavior,
which was rarely reported in previous studies.

To understand the origin of field oscillations, the polarization
charge density profile on the substrate at z = 0 is shown in the
subplots of Fig. 2(a). The charge density is defined by

σ(r) = lim
z→0+

νℓBε0(1 − ε
ε′
)∂zG(r, r0), (11)

and the field lines generated by σ(r) are sketched in Fig. 2(b). The
field oscillation is found to be generated by the strong transverse
polarization charge density waves, influencing both the near and
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FIG. 2. (a) The electric fields along x direction, generated by a cation with valence ν
= 1, fixed at z = τ0, and confined by a pair of dielectric substrates located at z = 0
and 10τ0. Subplots depict the polarization charge density on the lower substrates.
(b) The corresponding field lines for the γ = ±10 scenarios.

far fields. The oscillatory field lines have a very similar structure to
that of a surface plasmonic resonance wave,45 but their physical ori-
gin is different. The oscillation is due to the reflected polarization
enhanced by the dielectric confinement, characterized by parameters
γ1, γ2, and Lz . In particular, the confinement induced oscillation
wave number is given by

k0 =
ln γ1γ2

2Lz
, (12)

which we will show analytically that this corresponds to a first-order
pole in the Sommerfeld integral representation of the Green’s func-
tion. In addition to the wavelength of the oscillation, defined as two
times the distance between nearby zeros, satisfies

λ ⋅ k0 = 2π. (13)

Numerical validation shows that Eq. (13) is highly robust under dif-
ferent choices of r, r0, γ, or Lz , as shown in Fig. 3. Importantly,
the oscillation fields can be accurately predicted and controlled by
adjusting k0. Equation (12) also indicates that the oscillation shall
be weakened as Lz is increased and becomes non-oscillatory when
γ1γ2 < 1.

FIG. 3. Numerical validations for the relationship between k0 and λ under various
system parameter settings of γ and Lz . For each case, λ is approximated by aver-
aging distances between nearby zeros of Ex and different (randomly generated)
locations in z.

THEORETICAL ORIGIN FOR OSCILLATIONS

Equation (3) shows that the Green’s function can be repre-
sented as a Sommerfeld integral, and the analytical form of g(k, z, zs)
indicates that it has non-trivial behaviors. Clearly, g(k, z, zs) is diver-
gent at k = k0 [given in Eq. (12)], and as γ1γ2 increases to be larger
than 1, k0 will shift onto the positive real axis, then the Sommer-
feld integral needs to be renormalized. Notice that when k→ k0, the
divergent factor has the property

1
γ1γ2 exp (−2kLz) − 1

→ 1
2Lz(k0 − k) , (14)

so that k0 is a first-order pole and the Cauchy principal value exists.
Then Eq. (3) for γ1γ2 > 1 cases is given by

G(r, s) = −p.v.[∫
+∞

0
2g(k, z, zs)J0(kΔρ)kdk], (15)

which can be calculated numerically. In what follows, we ana-
lyze the oscillatory behavior (see the supplementary material for
more details). First, the Green’s function consists of integrals of the
following general form:

Io = ∫
∞

0

J0(kΔρ)e−ka

exp (2Lz(k0 − k)) − 1
dk, (16)

where Δρ, k0, and a are all the positive constants. We find that Io can
be further expanded as

Io =
e−k0a

2Lz
∫
∞

0

J0(k′)
k0Δρ − k′

dk′ + f (k0, Δρ, a), (17)

where k′ = kΔρ, and f(k0, Δρ, a) is a non-oscillatory analytic func-
tion that has a minor contribution to Io. The first integral term can be
understood as a function of k0Δρ, or denoted as Im(k0Δρ). Clearly,
Im is solely controlled by k0, given the different parameters of γ and
Lz . It is found that the first-order pole in Im provides the oscilla-
tory mode, and we also numerically validated that the wavelength
of the oscillation in Im indeed satisfies Eq. (13), which explains our
findings.
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SSB IN CONFINED N-PARTICLE SYSTEMS

To investigate the influence of dielectric nanoconfinement on
the collective behavior of quasi-2D charged systems, we further
developed a collection of numerical techniques to efficiently evaluate
the Green’s function Eq. (3). A novel Ewald-splitting type strat-
egy is proposed, together with renormalization techniques and fast
convergent quadrature schemes. All the fine details and numerical
validations are provided in the supplementary material. Our study
focuses on a prototypical quasi-2D charged system consisting of
a binary mixture of charged particles described by the primitive
model. The system comprises N/2 cations and N/2 anions, each with
the same diameter τ0 and valence ±1, resulting in an overall charge-
neutral system. The Hamiltonian of the system is defined as follows,
where i represents the i-th particle with charge qi located at position
ri,

H = 1
2

N

∑
i,j=1

′qiqjℓBG(ri, rj) +ULJ, (18)

The sum notation ∑i,j
′ implies that when i = j, the function

G(r, r) corresponds to the self-interaction term, and ULJ is the
shift-truncated Lennard-Jones (LJ) potential energy used to model
excluded-volume interactions. While this model disregards other
important interactions observed in experimental realizations, it
enables us to isolate the dielectric confinement effect. Similar
systems have been studied recently in Refs. 33, 35, and 36.

In all the MD simulations, we maintain a constant box size
in the xy plane of 180τ0 × 180τ0, which is confirmed to eliminate
boundary effects. We vary the values of Lz and γ to adjust the wave
number, k0. The system contains 300 cations and 300 anions. To iso-
late the electrostatic effect, the reduced temperature Tr is defined as
Tr = kBT/εCoul, where εCoul = e2

0/(4πε(3.5τ0)) and we set εLJ = kBT
for both particle–particle and particle–substrate interactions. We
integrate the temporal evolution using the velocity-Verlet algorithm
and control the temperature using the Anderson thermostat with
stochastic collision frequency ω = 0.1 and reduced temperature
Tr = 1.

In the ∣γ∣ ≤ 1 regime, extensive simulation works have been
done recently35,36 and no SSB phenomenon has been found, i.e.,
the density distributions of cations ρ

+
(r) and anions ρ

−
(r) always

maintain symmetries of the system, given by (1) cross symmetry
in the confined space: ρ

+
(r) = ρ

−
(r), (2) longitudinal symmetry:

ρ
±
(x, y, z) = ρ

±
(x, y, Lz − z), and (3) transverse symmetry: ρ

±
(x, y, z)

= ρ
±
(x′, y′, z). Our simulations give symmetric results for ∣γ∣ ≤ 1,

consistent with previous investigations (details are documented
in the supplementary material). In the following discussions, we
will focus on the strongly polarizable cases of ∣γ∣ > 1, where SSB
phenomena arise.

Figure 4(a) shows two snapshots of particle distributions near
the lower substrate and the corresponding induced surface charge
densities for γ = ±10 and Lz = 10. It clearly shows, for the first time,
SSB phenomena in such a dielectric confined charged system: both
the cross and transverse symmetries are broken when γ = 10, and the
remaining longitudinal symmetry is further broken when γ = −10
[as shown in Fig. 4(b)].

Globally, we observe charged particles spontaneously forming
square lattice structures near the substrates for both γ > 1 and γ < −1

FIG. 4. (a) Global particle distributions near the lower substrate and induced
surface charge densities for γ = ±10 and Lz = 10. Positive/negative induced sur-
face charges are in yellow/green, while positive/negative particles are in red/blue,
respectively. σ unit: e0/τ2

0 . (b) Local 3D structures of the charged particles,
enlarged from (a), while upper/lower boundaries are in green/yellow, respectively.
(c) Numerical validations for the relationship between the lattice constant and k0.
Symbols show data points from individual simulations; dashed lines depict the
linearly fitted result.

cases, which breaks the transverse symmetry. We attribute this to
the long-range single particle oscillatory field in the xy-plane, which
directs particles self-organizing into a checkerboard structure so as
to enhance the overall induced charge landscape, which helps con-
fine particles in local potential wells. Locally within each lattice site,
two different particle structures are observed: for γ > 1, an interfa-
cial liquid phase is formed, while for γ < −1, likely charged particles
self-assemble into 2D clusters. Both can be understood by the near
field behaviors due to a single confined particle, as was discussed and
illustrated in Fig. 2(a).

Interestingly, in the longitudinal direction, we find that the
interfacial liquids/clusters on opposing substrates are strongly cor-
related, i.e., there is a one-to-one “pairing” between the opposing
particle structures, as shown in Fig. 4(b). For γ = 10, the longitu-
dinal pairing is between symmetrically charged particles, while for
γ = −10, the pairing becomes anti-symmetric, which further breaks
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the longitudinal symmetry. The symmetric/anti-symmetric longitu-
dinal paring is due to the induced charge landscape on opposing
substrates. It is clearly evident that for γ = 10, the checkerboard
structures would be matched symmetrically, while for γ = −10, a
negative sign is added to the reflection rates, forming anti-symmetric
pairs.

Finally, it is worth noting that the formed square lattices can be
well-controlled via the single parameter k0, consistent with our the-
oretical prediction. As shown in Fig. 4(c), the lattice constant of the
system is found to be proportional to k−1

0 , with various choices of Lz
and γ. Two slightly different linear relationships are observed, with
fitted ratios of 1.2π and 1.4π for γ < −1 and γ > 1 cases, respectively.
The distance between neighboring clusters is found to be consistent
with the second zero point of the induced surface charge density
profile due to a single point charge [see subplots in Fig. 2(a)]. The
mechanism allows one to efficiently modulate the collective phase of
dielectric confined systems.

SUMMARY AND CONCLUSIONS

Using a newly developed efficient algorithm that permits simu-
lations of dielectric confined quasi-2D charged systems, we are able
to extensively explore the role of the dielectric confinement effect.
For a prototypical charge and size symmetric binary particle sys-
tem, it is discovered for the first time that spontaneous symmetry
breaking can be induced and even modulated via the substrate per-
mittivity alone. The mechanism of SSB is carefully analyzed, with
a simple quantitative relation discovered in predicting the formed
structures, which provides new physical insights and has potential
in future nanodevice design. While this work discovers the dielec-
tric confinement induced SSB structures, an interesting question
remains unanswered: what is the critical behavior associated with
them? According to the Mermin–Wagner theorem,46 it is under-
stood that for 2D systems, continuum symmetry cannot be broken
spontaneously. For the quasi-2D systems studied here, whether it is
a first-order or Kosterlitz–Thouless (KT) transition,47 this question
remains open and needs to be carefully examined. Our approach also
provides a powerful tool for efficient and accurate simulation for a
broad range of quasi-2D systems, with wide applications in soft mat-
ter physics and advanced materials. Future plans include exploration
of the critical behavior of dielectric confined systems, a fast algo-
rithm for large-scale simulations,37,48 and its extension to systems
with (1) quasi-1D geometry modeling charged nanopores49 and
(2) tensorial dielectric constants modeling charges under aqueous
nanoconfinements.43

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed derivation, numer-
ical quadrature scheme, error analysis, and numerical validations of
the method to calculate the electrostatic interaction, as well as videos
of the MD trajectories.
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