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ABSTRACT
In living and synthetic active matter systems, the constituents can self-propel and interact with each other and with the environment through
various physicochemical mechanisms. Among these mechanisms, chemotactic and auto-chemotactic effects are widely observed. The impact
of (auto-)chemotactic effects on achiral active matter has been a recent research focus. However, the influence of these effects on chiral
active matter remains elusive. Here, we develop a Brownian dynamics model coupled with a diffusion equation to examine the dynamics of
auto-chemotactic chiral active droplets in both quasi-two-dimensional (2D) and three-dimensional (3D) systems. By quantifying the droplet
trajectory as a function of the dimensionless Péclet number and chemotactic strength, our simulations well reproduce the curling and helical
trajectories of nematic droplets in a surfactant-rich solution reported by Krüger et al. [Phys. Rev. Lett. 117, 048003 (2016)]. The modeled
curling trajectory in 2D exhibits an emergent chirality, also consistent with the experiment. We further show that the geometry of the chiral
droplet trajectories, characterized by the pitch and diameter, can be used to infer the velocities of the droplet. Interestingly, we find that, unlike
the achiral case, the velocities of chiral active droplets show dimensionality dependence: its mean instantaneous velocity is higher in 3D than
in 2D, whereas its mean migration velocity is lower in 3D than in 2D. Taken together, our particle-based simulations provide new insights
into the dynamics of auto-chemotactic chiral active droplets, reveal the effects of dimensionality, and pave the way toward their applications,
such as drug delivery, sensors, and micro-reactors.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0207355

I. INTRODUCTION

Active matter systems consist of self-propelled units that can
convert stored energy into mechanical motion.1–3 Active matter
research is driven by two major scientific questions. The first one is
about the self-propulsion mechanism of individual units, which has
led to a more comprehensive understanding of how microorganisms
swim at low Reynolds numbers.4–9 The second question is concerned
with the mechanism underlying the collective motion (e.g., swarm-
ing and schooling) observed in cells, organisms, and animal herds.

Exploring this question has led to significant theoretical advance-
ments and model inventions.10,11 Active matter has immense poten-
tial to impact various fields, including biology, materials science, and
robotics.12–16

In biological systems, motile microorganisms often communi-
cate with each other through signaling molecules and use various
taxis mechanisms (gradient-driven migration) to perceive and
survive in the environment.17–20 For example, they can exhibit
chemotaxis or auto-chemotaxis by navigating in the surroundings
according to the gradient of certain external or self-generated
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chemical fields. These mechanisms are important for single cell
dynamics, colony migration and aggregation, biofilm
formation,21–24 and quorum sensing.25–28

Artificial microswimmers can also exhibit chemotaxis or
auto-chemotaxis through certain physicochemical processes rang-
ing from nano to micro scale.29 For example, certain colloidal
particles can self-propel by generating a chemical gradient in
their local environment.30–33 Examples include Janus colloidal par-
ticles in hydrogen peroxide solution or under UV light12,34,35

and self-propelled emulsion droplets in surfactant-rich aqueous
solutions.36,37 Notably, Ebbens, Campbell, and co-workers used
dimers of Janus particles38 and Janus particles coated by glancing
angle evaporation method39,40 to demonstrate a variety of self-
propulsion trajectories showing chiral symmetry breaking. Suspen-
sions of these particles exhibit intricate dynamics that are signif-
icantly influenced by the auto-chemotaxis.41–44 Recent studies of
the collective behaviors of auto-chemotactic particles include critical
dynamics and characteristic length scaling law of population of dif-
fusing agents and chemical fields,45 self-caging of auto-chemotactic
particles,46 phase separation of active emulsion droplets,47,48 and
Janus colloidal doublets emergent in cycloidal trajectories.49

Elucidating the self-propelling behaviors of individual emul-
sion phoretic particles capable of chemotaxis is also an ongoing
research effort.50 Spherical symmetric droplets exhibit active Brow-
nian motion.1,51–55 When the dispersed phase is a nematic liquid
crystal, Bahr, Maass, and co-workers have demonstrated that there is
a cascade of spontaneous symmetry breaking, i.e., the self-propelled
nematic droplets can exhibit circular motion in a surfactant solu-
tion well above the critical micelle concentration.41,43,56–58 Interest-
ingly, in unconfined, three-dimensional (3D) solutions, these active
nematic droplets move in a helical trajectory; while in quasi-two-
dimensional (2D) systems, they demonstrate a curling motion, with
their average trajectory also displaying a curly pattern.57 Similar heli-
cal or circular trajectories have also been observed in bacterial and
artificial swimmers with structural asymmetry or near an interface,
such as E. Coli and sea urchin sperms.23,59,60

The investigation of chiral active matter has garnered signif-
icant attention in recent years due to the broken time-reversal
symmetry and the emergence of novel collective dynamics. Artifi-
cial microswimmers offer a convenient and controllable platform
to understand chiral living microswimmers. Moreover, these man-
made chiral active particles provide novel synthetic systems for
potential applications, such as targeted therapeutic delivery and
dynamic self-assembly.61–64

Modeling of auto-chemotactic droplets accounting for all the
physicochemical details in simulations poses a challenge to date.
Take the self-propelled nematic droplet in a surfactant-rich solution
as an example, there is a cascade of spontaneous symmetry breaking
that leads to the curling trajectory of the droplet.65,66 One model-
ing approach involves solving the hydrodynamic equation, which
accounts for the boundary condition on the droplet interface, and
advection, diffusion, and solubilization of the surfactants. Through
combined theoretical and numerical efforts, researchers have made
progress in understanding the spontaneous locomotion.67–70 How-
ever, the emergence of droplet chirality arises from their intricate
internal structures,52,54,55,71 making it computationally demanding,
if not impossible, to elucidate using a full hydrodynamic approach.
An alternative approach is to construct a minimal model that

consists of a self-propelled, point, or disk/spherical particle. The
minimal model offers a convenient means to incorporate intrinsic
properties of droplets, such as chirality.46,72–74

In this work, therefore, we employ the particle-based approach
to examine the versatile trajectories of auto-chemotactic chiral
active droplets. We aim to address the following question: Given
the complexity of the nematic droplet experiment, what are the
minimum physical mechanisms/effects we should include to elu-
cidate the curling and helical trajectories observed in 2D and 3D,
respectively? Here, we hypothesize that chiral active motion, auto-
chemotactic effect, and dimensionality are adequate to reproduce
these trajectories.

To address the above question and to demonstrate our hypoth-
esis, we couple active Brownian dynamics with a chemical field diffu-
sion equation to investigate the dynamics of auto-chemotactic chiral
active droplets. Our simulations successfully reproduce the two
characteristic trajectories observed in the experimental observations
of self-propelled nematic droplets in surfactant-rich aqueous solu-
tions. We further adopt our model to examine how different physical
parameters quantitatively impact the geometry of these trajecto-
ries. Specifically, we investigate how the strength of the chemotactic
force, Péclet number, and dimensionality modify droplet kinetics in
terms of its velocities and angular velocities. These analyses provide
important insights into how chemical ingredients, such as chemo-
tactic force and Péclet number, dictate the self-propelling dynamics
of auto-chemotactic chiral active droplets, and offer a convenient
and reliable model for the future study of chemical-mediated active
matter.

II. MODEL
We model the dynamics of a self-propelled droplet in a chem-

ical field by active Brownian dynamics simulations coupled with
a diffusion equation. Specifically, a droplet of radius R is self-
propelling at an intrinsic linear velocity of magnitude v0, rotating
with a time-dependent orientation (unit) vector p̂ at an angular
velocity of ω0

75 with a rotation axis τ̂ that is always perpendicular
to p̂. Therefore, p̂ and τ̂ can be regarded as a reference frame of the
droplet. The droplet is also subjected to a chemotactic force due to
its self-generated chemical field [Fig. 1(a)]. In this work, we focus
on negative chemotactic forces to correspond to the nematic droplet
experiment.57

In this model, a point source located at the droplet’s centroid
emits certain chemicals at a rate of Q0 with diffusivity D that pro-
duces a self-generated chemical gradient. We choose the droplet
radius R, the intrinsic self-propelling speed v0, and emitting rate
Q0 as the basic unit of length, time, and chemical source rate,
respectively,

r =
r∗

R
, t = t∗

v0

R
, and C = C∗

v0

Q0R
. (1)

It is, therefore, convenient to write the dimensionless equations of
motion (Appendix A) by choosing R = v0 = Q0 = 1 as follows:

drp

dt
= p̂ + Fc, (2)

dΘ
dt
= RΘ, (3)
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FIG. 1. Simulated trajectories of auto-chemotactic chiral active droplets. (a) Simulated trajectories in 2D. Top: in the linear case (Ω0 = 0), the chemotactic force Fc aligns
with the droplet’s active velocity vector v0 = v0p̂. Bottom: in the chiral case (Ω0 ≠ 0), the droplet exhibits a curling trajectory with a pitch p. The chemotactic force Fc is
no longer aligned with v0. (b) Simulated 2D droplet trajectory (i) in comparison to the experimental trajectory (iii)57 (permission granted by APS), and simulated 3D droplet
trajectory (ii) in comparison to the corresponding experimental trajectory (iv)57 (permission granted by APS). The emergent velocity v2, emergent angular velocity ω2, helical
pitch p, and helical diameter d are graphically defined.

∂C
∂t
=

1
Pe
∇

2C + δ(r − rp). (4)

Equations (2) and (3) describe the over-damped Brownian motion
of the active particle, where its body axes are described by the two
orthogonal unit vectors, defined as Θ = [p̂ , τ̂ ]T . A rotational matrix
R rotates the droplet’s major and minor axes p̂ and τ̂ simultaneously
at an angular velocity ω = Ω0τ̂ +

√
2/Γξ(t), where Ω0 = Rω0/v0 is

the dimensionless angular velocity, Γ is the dimensionless persis-
tence length of the droplet, and ξ(t) is a rotational white noise
with zero mean, i.e., ⟨ξ(t)⟩ = 0. In 2D, ξ(t) = ξ(t)ẑ and ⟨ξ(t)ξ(t′)⟩
= δ(t − t′); and in 3D, ⟨ξμ(t)ξν(t

′
)⟩ = δμνδ(t − t′),66,75,76 where the

Greek subindices μ and ν denote the Cartesian coordinates x, y and
z. It is worth remarking that in 2D, the droplet moves within the
xy-plane, meaning that the unit vector τ̂ is always aligning with ξ,
which is along the z-axis. However, this is not the case in 3D. Numer-
ically, we evaluate the rotation of the droplet using the Rodrigues
formalism (Appendix B). Finally, Eq. (4) describes the evolution of
the chemical field due to the droplet’s emission and free diffusion.
Note that, for the 2D case, there are many alternative experimental
setups, such as droplets confined by plates or at an interface. In our
2D model, we consider both the droplets and the chemical field to be
confined to the xy-plane. Thus, we can simply solve the 2D diffusion
equation (instead of 3D with certain boundary/interface conditions
in z) to obtain an effective 2D chemical field evolution. To model the
quasi-2D case in which the droplet is confined to a liquid interface,
we can modify Eq. (4) by including a decay term to account for the
unconfined diffusion of the chemical field in the z-dimension: ∂C

∂t
= 1

Pe∇
2C + δ(r − rp) − βC with β being a constant decay rate.

The system can be described by four dimensionless numbers:

(1) The chemotactic constant, Λ: it sets the scale of the chemo-
tactic force Fc that is proportional to the average of the
tangential gradient of the chemical concentration on the
droplet surface,56,68,77

Fc = −
Λ
A∮S
∇sCdS, (5)

where ∇s is the surface-gradient operator defined as ∇s
= (I − nn) ⋅ ∇, with I being the identity tensor and unit vec-
tor n denoting the surface normal. The surface area A = 2πR
and A = 4πR2 in 2D and 3D, respectively.

(2) The persistence length, Γ = lp/R: it is a reduced charac-
teristic length scale in which a droplet travels before it
changes its orientation. Here, we only consider the rota-
tional noise because it dominates the particle dynamics.78,79

In Appendix C, we show that the chiral droplet trajectories
with and without the translational noise are similar in both
2D and 3D.

(3) The chirality, Ω0 = Rω0/v0: it acts as a constant angular
torque along τ̂ to rotate the orientation vector p̂. In 2D, τ̂
is fixed at the z-axis; thereby, p̂ = (cos θ, sin θ). Equation (3)
can be reduced to

dθ
dt
= Ω0 +

√
2
Γ

ξ(t). (6)

In the 3D case, it is more convenient to use the rotational
operator R to perform the rotations on Θ in 3D, which can
be accurately calculated by the Rodrigues formula80 in the
particle frame (see Appendix B for detailed formulations).
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(4) The active Péclet number, Pe = Rv0/D: it is the ratio of the
self-propelling velocity of the droplet to the diffusion rate
of the emitted chemical. It measures the relative influence
of the droplet’s motion and chemical diffusion on its behav-
ior. Alternatively, it can be interpreted as a measure of the
droplet’s size by selecting the characteristic time scale as
R/v0.41,69,81

We employ the Euler–Maruyama scheme to numerically inte-
grate Eqs. (2) and (3). We also incorporate the immersed boundary
method and finite difference method (grid-based) to evaluate Eq. (4)
(Appendix D). Finally, to validate the accuracy of our grid-based
solver, we compare it to a mesh-free Green’s function method that
provides higher accuracy for larger values of Pe and Λ (Appendix E).
The effects of persistence length and chirality on the interactions
between chiral active particles and the complex environment have
been discussed in a previous work.62 In this work, we choose to focus
on the impact of the chemotactic effect by fixing Ω0 = 1 and Γ = 500.

III. RESULTS
A. The curling and helical trajectory

One of the unique features of auto-chemotactic chiral active
droplets is their curling trajectories in 2D and helical trajecto-
ries in 3D, which have been reported in the nematic droplet
experiment.56,57 Our simulation results match very well with the

experimentally observed trajectories [Fig. 1(b)]. In what follows, we
focus on characterizing the droplet dynamics. Their motion can be
described by an instantaneous linear velocity v1 and an instanta-
neous angular velocity ω1 [Fig. 1(a)]. In addition, the droplet motion
can also be described by an emergent (migration) velocity v2 charac-
terizing its average displacement or migration as a function of time
[Fig. 1(b)]. In 2D, there is an emergent angular velocity ω2 that char-
acterizes the curling trajectory of the droplet. Associated with these
curling or helical trajectories, a pitch p and a helical diameter d can
also be introduced to describe the geometry of droplet trajectories in
both 2D and 3D (Fig. 1).

In the experiment, the chiral structure of the droplet’s trajectory
arises from a three-step process of spontaneous symmetry breaking.
In the first step, the droplet acquires self-propelling motion caused
by a Marangoni flow on the droplet’s surface.46,51,56 In our model,
this is modeled by a constant self-propelling velocity v0 [Fig. 1(a)]. In
the second step, the droplet’s motion gains a rotational component
from the misposition of the topological defect,57 and this is modeled
as a constant angular velocity ω0 [Fig. 1(a)]. In the third step, the
filled chemical trail further breaks the symmetry of the propelling
direction, hence causing the trajectory to form a curling or helical
pattern.54,57,71,82 This effect is modeled by a chemical field diffusion
and a negative auto-chemotactic effect [Fig. 1(b)].

It is worth emphasizing that a static angular velocity alone is
insufficient to explain the emergence of the helical trajectory in 3D.
In the absence of an out-of-plane component in the force acting
on the droplets, as is the case in 2D, the droplet’s trajectory will be

FIG. 2. Curling trajectories in 2D. Droplet trajectories with varying values of Λ at fixed Pe = 60 (top) and varying values of Pe at fixed Λ = 8 (bottom). The trajectory gradually
changes from the curling mode to an unstable mode as Λ (top) or Pe (bottom) increases. Background color shows the chemical field C and Green dots indicate the final
positions of the droplet. The mesh-free method is used to produce trajectories for Pe > 40 and Λ > 6.
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FIG. 3. Chemical gradient field in 2D. The concentration field C (background color)
and its gradient ∇C (the vector field) for a linear auto-chemotactic active droplet
with Pe = 3 (a) and Pe = 60 (b) at the same Λ = 4.

confined to the plane normal to τ̂ and exhibit a curling motion.57 An
out-of-plane noise in the force is required for the droplet to develop a
persistent displacement propulsion along the third dimension.55,57,82

In 2D, the curling trajectory may become irregular when Pe or
Λ becomes too large:68,77 the trajectory can transition from a peri-
odic curling structure to a more irregular shape when Λ > 6 and
Pe > 40 (Fig. 2). This is attributed to the increasing repelling force
from the chemical trail. The chemotactic force is closely associated
with Λ [which scales the interaction directionally, Eq. (5)] and Pe
[which determines the distribution of the chemical field, Eq. (E2)].
At high Pe, the self-propelled speed of the droplet is much faster than
the diffusion of the chemical field. In this regime, the droplet tends to
leave behind a thin and distinct trail due to the relatively slow diffu-
sion (Fig. 3). Consequently, when a droplet encounters its own trail,
it experiences a strong chemotactic force resulting from the signif-
icant gradient present. Therefore, the droplet becomes increasingly
difficult to pass through smoothly as Λ or Pe increases.46 However,
the helical trajectory in 3D remains stable for large Pe and Λ (Fig. 4).
This is because the extra degree of freedom allows the droplet to
move along the τ̂-axis, preventing a strong repulsion from the trail
of the chemical.

B. Mean velocities of chiral and linear
auto-chemotactic droplets in 2D and 3D

We quantify the mean instantaneous velocity of chiral (Ω0 ≠ 0)
and linear (Ω0 = 0) droplets as ⟨v1⟩ and ⟨v1⟩linear, respectively. By
comparing the two quantities, we can elucidate the effect of chiral-
ity on the dynamics of auto-chemotactic active droplets. We first
find that both ⟨v1⟩ and ⟨v1⟩linear increase monotonically with an
increase in Λ, which is consistent with our expectation that Λ scales
the magnitude of Fc [Eq. (5)], thereby linearly scaling the instanta-
neous velocity [Figs. 5(a) and 5(c)]. When Pe ≲ 10, the two mean
instantaneous velocities grow rapidly as Pe increases [Figs. 5(b) and
5(d)]. Note that the smaller Pe is, the more homogeneous the chem-
ical field becomes, and this can lead to the smaller chemotactic force
acting on the droplet.68 Therefore, as Pe→ 0, both ⟨v1⟩ and ⟨v1⟩linear

FIG. 4. Droplet trajectories in 3D (a)–(c) The droplet trajectory and the concentra-
tion field for Λ = 0 (a), 2 (b), and 10 (c) at Pe = 20. The background color shows
the chemical concentration field C. The inset in (a) is a zoomed-in view of the
trajectory. The pitch p of the helical trajectory increases as Λ increases.

approach to v0 = 1, the intrinsic self-propelling velocity. When Pe
increases from 10, both ⟨v1⟩ and ⟨v1⟩linear reach a plateau [Figs. 5(b)
and 5(d)] due to the thinning of the chemical tail, resulting in a
reduced contribution from the tangential gradient [Fig. 3(b)]. Sim-
ilar droplet behaviors as a function of Pe are also reported in other
fully hydrodynamic models.68,83,84

We next examine the dimensionality dependence of droplet
velocities. For linear/achiral active droplets, their mean velocities,
⟨v1⟩linears, are insensitive to system dimension [Figs. 5(c) and 5(d)].
By contrast, chiral active droplets exhibit nontrivial dimensionality
dependence. Specifically, we find that ⟨v1⟩ is smaller in 2D than in
3D [Figs. 5(a) and 5(b)]. In 2D, the droplet’s trajectory is confined
to the xy-plane,56,57,73 and it experiences a periodic push and pull by
the chemical trail (Fig. 6). This effectively impedes droplet propul-
sion on average. In 3D, however, the droplet is pushed by a more
uniform repulsive chemotactic force toward the third direction to
form a helical trajectory (Fig. 6), leading to a relatively higher ⟨v1⟩.
In a similar phenomenon, it can be rigorously proved that micropar-
ticles will always transport slower in a periodic potential than in a
uniform potential.85 The difference in dimensionality dependence
between achiral and chiral active droplets implies that there is an
interesting interplay between chirality and dimensionality.

We further compare chiral and achiral droplets. We find
that ⟨v1⟩/⟨v1⟩linear < 1 in both 2D and 3D [Figs. 5(e) and 5(f)].
For linear active droplets, the chemotactic force is parallel with
the droplet velocity, serving to accelerate droplet self-propulsion
[Fig. 1(a)]. For chiral active droplets, such force is not aligned
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FIG. 5. Mean instantaneous velocities of auto-chemotactic chiral active droplets. (a)–(d) Mean instantaneous velocities ⟨v1⟩ for chiral droplets (Ω0 ≠ 0) and ⟨v1⟩linear for
linear droplets (Ω0 = 0). (e) and (f) The ratio ⟨v1⟩/⟨v1⟩linear. (a), (c), and (e) Λ ∈ [0, 6] with fixed Pe = 20, 40. (b), (d), and (f) Pe ∈ [0, 60] with fixed Λ = 2, 4.

with the droplet velocity, thereby providing less acceleration effect
[Fig. 1(a)]. Moreover, ⟨v1⟩/⟨v1⟩linear decreases from 1 when Λ or
Pe increases [Figs. 1(e) and 1(f)], further supporting the argument
that the droplet velocity is dictated by the chemotactic force, as the
chemotactic effect is pronounced when Λ or Pe is large. We also
observe that ⟨v1⟩/⟨v1⟩linear is sensitive to large Pe and Λ values in 2D
but much less sensitive to these parameters in 3D. This difference

FIG. 6. Instantaneous droplet velocities. Instantaneous velocity v1 of chiral (blue)
and linear (orange) auto-chemotactic droplets in 2D (dashed) and 3D (solid) as a
function of time.

can be understood by the unstable motion in 2D, comparing with
the stable helical motion in 3D even at higher Pe and Λ values.
Notably, the variation of v1 is significantly larger in 2D compared
to 3D (Fig. 6).

C. Emergent droplet behaviors
The behavior of the emergent velocity, namely, ⟨v2⟩

[Fig. 1(bi-ii)], follows a similar trend to ⟨v1⟩ as a function of
Pe and Λ. However, ⟨v2⟩ is smaller in 3D than in 2D [Figs. 7(a)
and 7(b)], which appears to be in contrary to the behavior of
⟨v1⟩. This can be explained by the distinct nature of the emergent
trajectories in 2D and 3D. In 2D, the droplet’s trajectory is a curling
pattern due to the confinement. This results in a higher emergent
velocity at the price of a slower ⟨v1⟩. On the other hand, in 3D,
the emergent trajectory takes a helical shape and slowly migrates
in the third dimension. This leads to a smaller ⟨v2⟩ while having a
higher ⟨v1⟩. The contrasting behavior of ⟨v2⟩ between 2D and 3D
systems highlights the influence of dimensionality on the emergent
dynamics of chemotactic systems. Understanding these differences
is crucial in characterizing and predicting the behavior of active
particles in different spatial dimensions.67,82,86

Moreover, the angular velocity ω1 remains nearly a constant
across all cases [Figs. 7(c) and 7(d)]. This can be attributed to the
absence of external torque in our equation of motion [Eq. (3)],
ω1 ≅ ω0. It is worth noting that the fluctuations of ω1 revealed by the
FFT analysis (Appendix H) are larger in 2D than in 3D. This is con-
sistent with the fact that 2D droplets experience more fluctuations
(Fig. 6).
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FIG. 7. Emergent velocities and angular velocities of auto-chemotactic chiral active droplets. (a) and (b) The emergent velocity ⟨v2⟩ as a function of Λ (a) and Pe (b). (c) and
(d) Angular velocity ω1 obtained from fast Fourier transform (FFT) analysis as a function of Λ (c) and Pe (d). (e) and (f) Pitch p of the emergent trajectory (e) and the helical
diameter (f) are linearly related to ⟨v2⟩ and ⟨v1⟩, respectively, regardless of dimensionality.

FIG. 8. More details of the concentration field. (a) and (b) Concentration field (b)
along the diameter d of the curling trajectory at three different positions indicated
in (a). The black dashed line in (b) represents the center of the curling trajectory.
(c) and (d) Cross section of the concentration field along the center of the helical
trajectory in the yz plane (black dashed box in the inset) and xz plane (red dashed
box in the inset).

The pitch of the curling and helical trajectory can be repre-
sented as p = ⟨v2⟩T = ⟨v2⟩

2π
ω1

. Since ω1 is a constant in both 2D and
3D, p is proportional to ⟨v2⟩. Figure 7(e) shows that there is a linear
relationship between p and ⟨v2⟩.

Upon analyzing the trajectories in both 2D and 3D, we mea-
sure the helical diameter of the curling trajectory as d = 2 ⟨v1⟩

ω1
, as

illustrated in Fig. 1. Since ω1 is a constant, d is proportional to ⟨v1⟩

[Fig. 7(f)]. Similar to p, we again find a linear mapping between d and
⟨v1⟩. Therefore, the dynamics of the auto-chemotactic chiral active
droplets can be conveniently inferred by their trajectory geometries.

Our simulation also provides useful details to elucidate the
emergent chirality of the 2D droplet trajectories. By measuring the
concentration field C along the helical diameter direction [Fig. 8(a)],
we find that the C field shows a bias toward the right-hand side of
the migration direction by exhibiting a negative skewness [Fig. 8(b)].
In fact, the counter-clockwise moving droplet periodically crosses
its own trail on the right-hand side of its mean migration direction.
This effectively increases the C field on the right-hand side and gives
rise to a repulsive force toward to the left-hand size. Thereby, the
droplet tends to migrate toward left with respect to its mean migra-
tion direction. This symmetry breaking in the C field is not observed
in 3D [Figs. 8(c) and 8(d)], as the droplet spirally migrates without
crossing its own trace.

The emergent angular velocity ω2 is measured as a function of
Pe and Λ (Fig. 9). As expected, the higher the chemotactic effect is,
the higher ω2 is. Interestingly, ω2 is more sensitive to Λ than to Pe.
Because Λ directly scales the chemotactic force, whereas Pe sets the
diffusion rate of the chemical. Again, similar to the Pe dependence
of droplet velocities ⟨v1⟩ and ⟨v2⟩, ω2 also exhibits a plateau when
Pe ≳ 20. For large Pe and Λ, the irregular droplet trajectories render
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FIG. 9. Emergent angular velocity ω2 of the curling trajectory in 2D. (a) and
(b) ω2 for Pe ∈ [0, 60] with fixed Λ = 2, 4 (a) and for Λ ∈ [0, 6] with fixed
Pe = 20, 40 (b).

the measurement of ω2 increasingly difficult and give rise to large
error bars.

IV. DISCUSSION
In this work, we use active Brownian dynamics coupled with

a chemical field diffusion to model auto-chemotactic chiral active
droplets, utilizing the immersed boundary method (IBM) as the
numerical approach. This approach replaces the delta function with
a regularized kernel function for grid-based simulations. By employ-
ing this model, we successfully recapitulate the curling and helical
trajectories exhibited by the chiral auto-chemotactic droplets in both
2D and 3D environments, matching well with the experimental
observations.57 In a recent work by Li and Koch, a 2D multi-phase
fluid approach was employed to model a 2D self-propelled com-
pound droplet. The symmetry breaking of the two fluid compart-
ments can lead to chiral trajectories similar to the curling trajectory
discussed here.77 However, the emerging chirality was not reported
in that model.77

Note that chiral trajectories have also been observed in vari-
ous Janus colloidal particles38–40,49 and in isotropic oil droplets.87

In these systems, however, the chirality is either unstable or there
is no chemotactic effect. As a result, stable curling or helical struc-
ture is absent in these trajectories. By contrast, in the liquid crystal
experiment, the chirality of the droplet motion due to a spontaneous
symmetry breaking is stable and there is a negative chemotactic

effect.57 In our model, an intrinsic chirality is implemented in the
equation of motion for the droplet via introducing an intrinsic
nonzero angular velocity Ω0 in Eq. (3). By including a negative
chemotactic effect, our simulation reproduces the curling or helical
trajectories. Our simulation further suggests that the interplay of the
intrinsic chirality of the droplet and its negative chemotactic effect
can give rise to the emergent, secondary chirality in its trajectory in
2D. In the future, we will extend our current model to switchable
(unstable) chirality. Note that if the auto-chemotactic effect is posi-
tive (attraction), we expect that both 2D and 3D droplets will exhibit
self-trapping, cyclic trajectories and lose the helical structure, as is
similar to a previous work, in which the diffusion of the chemical
trail was not considered.24

The mean velocity of the chemotactic droplets increases as Pe
and Λ increase. Comparing 2D and 3D cases, the mean velocity
is higher in 3D due to an additional degree of freedom. However,
there is a transition where the mean linear velocity is higher in 2D
below a certain threshold but higher in 3D above that threshold. The
mean velocity is consistently smaller than the mean linear velocity,
indicating a slowing effect caused by the periodic chemotactic force.

Furthermore, the emergent velocity ⟨v2⟩ increases with higher
chemotactic force, but it is smaller in 3D than in 2D. This is because
the emergent trajectories in 2D exhibit a curling pattern, resulting in
higher ⟨v2⟩ due to confinement, while in 3D, the trajectories take a
helical form and migrate slowly, leading to lower ⟨v2⟩ despite higher
⟨v1⟩. In both 2D and 3D, the angular velocity ω1 remains to be a
constant, and the pitch of the trajectories is proportional to ⟨v2⟩.
In addition, the curling trajectory in 2D displays a higher degree
of symmetric breaking, resulting in a more pronounced emergent
chiral structure compared to the 3D case.

The challenging nature of simulating (auto)chemotactic
droplets, especially when considering their complex coupling of
Stokes flow, chemical diffusion, and internal structure, has led
to the development of various models in the literature (Table I).
These models can generally be classified into two approaches: full
hydrodynamic simulations and particle-based simulations. Each
approach employs different numerical methods and emphasizes
various aspects of the dynamic behavior observed experimentally.

Hydrodynamic simulation methods, such as multi-phase
fluids69,77,88 and rigid disks with accurate boundary conditions,68

TABLE I. List of models in (auto) chemotactic droplets.

Dimension Chirality (Auto) chemotaxis Self-interaction Method

Hu et al.68 2D × Auto-chemotaxis ✓ Disk with BC
Morozov and Michelin69 2D × Auto-chemotaxis ✓ Multi-phase fluid
Li and Koch77 2D ✓ (spontaneous) Auto-chemotaxis ✓ Multi-phase fluid
Kulkarni et al.88 2D and 3D × Auto-chemotaxis ✓ Multi-phase fluid
Maity and Burada89 3D ✓ (intrinsic) Chemotaxis × Chiral squirmers
Saha et al.90 2D × Chemotaxis × Particle-based
Stürmer et al.91 2D × Chemotaxis × Particle-based
Hokmabad et al.46 2D and 3D × Auto-chemotaxis × Particle-based
Ziepke et al.42 2D × Auto-chemotaxis ✓ Particle-based
Our model 2D and 3D ✓ (intrinsic) Auto-chemotaxis ✓ Particle-based
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are optimized to capture the complete hydrodynamic interactions.
These methods represent the intricate interplay between fluid flow,
droplet motion, and chemical gradients. They are particularly use-
ful for investigating the role of hydrodynamics in the behavior
of (auto)chemotactic droplets such as how chiral symmetry is
spontaneously broken due to hydrodynamic interactions.87,92

On the other hand, particle-based simulation models, such
as phenomenological models of self-propelled point particles with
chemotactic interactions,42,46,90,91 offer advantages in terms of gener-
alizability to 3D systems and the inclusion of chirality properties. In
auto-chemotaxis, these models often simplify the droplets as point
sources or sinks, neglecting their self-interaction as the singularity in
the gradient. As a result, they are more commonly used for studying
the collective behavior of multiple droplets rather than individual
droplets.

Our phenomenological, particle-based model incorporates chi-
ral effects and self-interaction, distinguishing it from other existing
models (Table I). Our model includes self-interaction for a sin-
gle droplet and evolving the chemical field in both 2D and 3D.
This feature provides a more detailed understanding of the chem-
ical gradients surrounding the droplets, offering useful insights into
the impact of the chemical environment and intrinsic chirality on
droplet dynamics.

As such, our work presents a convenient particle-based simu-
lation model to phenomenologically study the interplay of multiple
physical effects in active droplet dynamics. We have provided new
insights into the effects of chirality and dimensionality on chemo-
tactic active droplets. In future work, we will incorporate hydrody-
namic effects and extend the study of single droplet dynamics to
their collective behaviors, and positive auto-chemotactic effects will
also be examined.

ACKNOWLEDGMENTS
R.Z. acknowledged financial support from the Research Grants

Council of Hong Kong SAR (Grant No. 26302320). Z.G. acknowl-
edged financial support from the Natural Science Foundation of
China (Grant No. 12201146), the Natural Science Foundation of
Guangdong (Grant No. 2023A1515012197), and the Guangzhou-
HKUST(GZ) Joint Funding Program (Grant No. 2023A03J0003 and
2024A03J0606). The simulation was conducted using the HKUST
Central High-Performance Computing Cluster (HPC3).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Chung Wing Chan: Formal analysis (lead); Investigation (lead);
Methodology (lead); Writing – original draft (lead); Writing –
review & editing (equal). Zheng Yang: Investigation (supporting);
Writing – review & editing (equal). Zecheng Gan: Methodology
(equal); Supervision (equal); Writing – review & editing (equal).
Rui Zhang: Conceptualization (equal); Funding acquisition

(equal); Project administration (equal); Supervision (equal);
Writing – original draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY
The data that support the findings of this study are available

from the corresponding author upon reasonable request.

APPENDIX A: NON-DIMENSIONLESS EQUATIONS
OF THE MODEL

We consider a self-propelling and self-rotating droplet with a
radius of R, moving at a linear velocity v0 and an angular velocity
ω0.75 Certain chemical is emitted from the droplet’s centroid at a rate
of Q0 and diffusivity D, creating a self-generated chemical gradient.
This gradient leads to a negative chemotactic force F∗c acting on the
droplet from its environment,46,72,73

dr∗p
dt∗
= v0p̂ − F∗c , (A1)

dp̂
dt∗
= (ω0τ̂ +

√
2Drξ(t)) × p̂, (A2)

dτ̂
dt∗
= (ω0τ̂ +

√
2Drξ(t)) × τ̂, (A3)

∂C∗

∂t∗
= D∇∗2C∗ + δ(r∗ − r∗p )Q0, (A4)

where τ̂ is the rotational axis, which is always perpendicular to p̂.

APPENDIX B: 3D ROTATION

In 3D, we fix the relative configuration of Θ = [p̂ , τ̂ ]T such that

dp̂
dt
=
⎛

⎝
Ω0τ̂ +

√
2
Γ

ξ(t)
⎞

⎠
× p̂, (B1a)

dτ̂
dt
=
⎛

⎝
Ω0τ̂ +

√
2
Γ

ξ(t)
⎞

⎠
× τ̂. (B1b)

Here, p̂ and τ̂ are under the same rotation due to the chiral-
ity Ω0τ̂ and noise

√
2/Γξ(t). Instead of performing a small rotation

about each axis at a time, it is advisable to perform a rotation directly
about an axis defined by a vector ω,80,93

ω = (ωx, ωy, ωz) = (
Δθx

Δt
,

Δθy

Δt
,

Δθz

Δt
), (B2)

with the angular increment,

Δθ = Δt∣ω∣ =
√

(Δθx)
2
+ (Δθy)

2
+ (Δθz)

2. (B3)

This is exactly the rotation acting on the particle, where Δθμ

= Ω0τ̂μ +
√

2/Γξμ(Δt). Such rotation matrix R can be written as the
exponential of the skew-symmetric matrix θ×,
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R(Δθ) = eθ× = I +
+∞
∑
n=1

1
n!

θn
×, (B4)

where

θ× =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −Δθz Δθy

Δθz 0 −Δθx

−Δθy Δθx 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B5)

Because of the properties of θ×, namely, θ3
× = −Δθ2θ×, it can be

written as

R(Δθ) = eθ× = I + sin Δθ
Δθ

θ× +
1 − cos Δθ

Δθ2 θ2
×.

This is the Rodrigues formula80 for the rotation of an angle Δθ
around a direction ω that is exactly the rotation of the axes of the
particle reference frame due to a rotational noise term of ξ and active
torque Ω.

APPENDIX C: TRANSLATIONAL NOISE

To show the role of the translational noise, we introduce a noise
term in Eq. (2) as

drp

dt
= p̂ + Fc +

√
2
Γt

η(t). (C1)

Similar to the rotational noise ξ(t), the translational noise η(t) also
has zero mean and satisfies ⟨ημ(t)ην(t

′
)⟩ = δμνδ(t − t′). Figure 10

shows that the droplet trajectory is similar regardless of the presence
of the translational noise. Therefore, throughout the main text, we
set Γt = 0, and then, Eq. (C1) reduces to Eq. (2).

FIG. 10. Comparison of the two numerical methods and the effect of translational
noise. (a)–(c) Droplet trajectories in 3D with Pe = 20 and Λ = 5 calculated using
grid-based (a) and mesh-free method (b) and (c). (d)–(f) Droplet trajectories in 2D
with Pe = 40 and Λ = 4 calculated using grid-based (d) and mesh-free methods
(e) and (f). In 3D, a rotational noise level corresponding to Γ = 500 is applied,
while in 2D, no rotational noise (Γ = 0) is introduced. An additional translational
noise Γt = 500 is applied to (c) and (f). Green dots show the final positions of the
droplets.

APPENDIX D: IMMERSED BOUNDARY METHOD (IBM)

To simulate droplet behavior in a chemical environment, we
integrate the Langevin and diffusion equations numerically. Since
the Langevin equation characterizes particle dynamics, while the
diffusion equation for the chemical field requires grid-based dis-
cretization [Fig. 11(a)], the immersed boundary method (IBM) is
employed to approximate the point source (located at the center of
the droplet). In the simulation, we replace the Dirac delta function
δ(rp) with a regularized kernel function on grids,94

δ(rp) ≈∑
k

δh(rk − rp), (D1)

where k runs over all grid points, and δh is the regularized delta
function defined as

δh =
d

∏
μ=1

1
h

φ(
Δrμ

h
), (D2)

where h is the lattice spacing, d is the dimension, and Δrμ is the μ
component of the distance between the grid point rk and the point rp
of the delta function located. The distribution kernel, φ(r), specifies
the shape of the regularized delta function,95

φ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 −
1
2
∣r∣ − ∣r∣2 +

1
2
∣r∣3, 0 ⩽ ∣r∣ < 1,

1 −
11
6
∣r∣ + ∣r∣2 −

1
6
∣r∣3, 1 ⩽ ∣r∣ < 2,

0, 2 ⩽ ∣r∣.

(D3)

Figures 11(b) and 11(c) demonstrate a quantitative agreement
between our numerical method and the theoretical result [Eq. (E1)]
for the concentration.

FIG. 11. Computation of the concentration field. (a) The schematic of the IBM
method in the 2D gird. (b) and (c) Comparison of the concentration between the
IBM method and analytical solution in 2D (b) and 3D (d). We initially set the droplet
to move straightly along the x axis from the origin at a constant velocity v0 = 1.
We then measure the concentration along the y axis (and z axis, in the case of
3D simulation) at the point where x = 0. These simulation results agree with the
analytical solutions.
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APPENDIX E: MESH-FREE METHOD

The concentration and the corresponding chemical gradi-
ent can be calculated via Green’s function approach, alternatively.
Assuming a point source with emission rate Q0 = 1 moving in a
trajectory r′(t′), and released at all times 0 < t′ < t, the solution of
Eq. (4) is Green’s function convoluted over the particle trajectory
r′,73,90

C(r, t) = ∫
t

0
(

Pe
4π(t − t′)

)

d/2
exp(−

∣r − r′∣2Pe
4(t − t′)

)dt′, (E1)

where d is the dimension of the system, and the gradient field can be
directly calculated as

∇∣rC(r, t) = −2∫
t

0

r − r′

πd/2 (
Pe

4(t − t′)
)

d/2+1

exp(−
∣r − r′∣2Pe
4(t − t′)

)dt′.

(E2)

Similar to the finite difference method, in order to obtain the chemo-
tactic force using Eq. (5), we need to calculate the mean of the surface
gradient. In this method, we can directly obtain the gradient at the
surface through integration using Eq. (E2). This approach allows
us to avoid discretizing the space into grids and provides a more
accurate result. However, since it directly calculates the gradients
at specific points, it lacks comprehensive information on the full
concentration field.

APPENDIX F: ANALYSIS OF THE CHEMICAL FIELD
GRADIENT

The chemical field gradient ∇∣rC(r, t) is highly related to the
velocity profile of Pe [Eq. (5)]. When Pe is small, the exponential
term in Eq. (E2) approaches to 1; hence, ∇∣r is depending on the on

the first term, i.e.,∇∣r ∝ ( Pe
4(t−t′))

d/2+1
.

In the exponential term, we can choose (t − t′) equal to the
period of the chiral trajectory T, then r − r′ is the corresponding
pitch p. This implies that the term exp (− p2Pe

4T ) captures the effect
of the historical path. When Pe is small, the historical path con-
tinues to have a significant impact on the droplet. However, as Pe
becomes larger (Pe≫ 4T/p2), only the historical path within a pitch
significantly contributes to the auto-chemotactic force. Therefore,
∇∣r slowly decays.

APPENDIX G: CROSS SECTION

The emergence of the curling trajectory in 2D is due to the
symmetry breaking in the concentration field. Our measurements
of the concentration field distribution across the diameter (d) of the
curling trajectory reveal a bias toward the right-hand side (negative
skewness μ̃3 =

∑N
i (Ci−C̄ )3

(N−1)σ3 ), resulting in a counterclockwise trajectory
with a handedness preference consistent with our institution. Mean-
while, we have not observed similar emergent curvature in 3D due
to the absence of a comparable bias in the chemical trail.

APPENDIX H: ANALYSIS

We utilize the auto-correlation function (ACF) of the droplet
velocity v1 to gain a quantitative understanding of the trajectory’s
geometry and emergent behavior,

ACF(Δt) =
⟨v1(t) ⋅ v1(t + Δt)⟩

⟨v1(t)⟩2
, (H1)

where Δt represents the time lag and ⟨⋅⋅⋅⟩ denotes the time average.
We can extract the temporal correlations in the droplet’s orienta-
tion by analyzing the ACF. We then apply the FFT method to the
ACF to obtain the angular velocity ω1 and the period of orienta-
tion T = 2π/ω1. We calculated the moving average position over five
periods to obtain the emergent trajectory ⟨r̄(t)⟩. The mean veloc-
ity ⟨v1⟩ is calculated from the trajectories using the formula ⟨v1⟩

= ⟨rp(t + Δt) − rp(t)⟩, while the mean emergent velocity is obtained
from the emergent trajectory using the formula ⟨v2⟩ = ⟨r̄(t + 5T)
− r̄(t)⟩. The pitch of the emerging curling trajectory in 2D and the
helical trajectory in 3D is measured by p = ⟨v2⟩T.
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