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ABSTRACT
We develop a linearly scaling variant of the force coupling method [K. Yeo and M. R. Maxey, J. Fluid Mech. 649, 205–231 (2010)] for
computing hydrodynamic interactions among particles confined to a doubly periodic geometry with either a single bottom wall or two walls
(slit channel) in the aperiodic direction. Our spectrally accurate Stokes solver uses the fast Fourier transform in the periodic xy plane and
Chebyshev polynomials in the aperiodic z direction normal to the wall(s). We decompose the problem into two problems. The first is a
doubly periodic subproblem in the presence of particles (source terms) with free-space boundary conditions in the z direction, which we
solve by borrowing ideas from a recent method for rapid evaluation of electrostatic interactions in doubly periodic geometries [Maxian et al.,
J. Chem. Phys. 154, 204107 (2021)]. The second is a correction subproblem to impose the boundary conditions on the wall(s). Instead of
the traditional Gaussian kernel, we use the exponential of a semicircle kernel to model the source terms (body force) due to the presence of
particles and provide optimum values for the kernel parameters that ensure a given hydrodynamic radius with at least two digits of accuracy
and rotational and translational invariance. The computation time of our solver, which is implemented in graphical processing units, scales
linearly with the number of particles, and allows computations with about a million particles in less than a second for a sedimented layer
of colloidal microrollers. We find that in a slit channel, a driven dense suspension of microrollers maintains the same two-layer structure as
above a single wall, but moves at a substantially lower collective speed due to increased confinement.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0141371

I. INTRODUCTION

The development of more efficient, accurate, and scalable
methods for suspensions of rigid and flexible particles in Stokes flow
remains a key challenge in soft condensed matter physics and chem-
ical engineering. In addition to the long-ranged nature of hydro-
dynamic interactions, the inclusion of Brownian motion and the
presence of confining boundaries pose particular difficulties. While
confining boundaries partially screen the hydrodynamic interac-

tions, they continue to decay algebraically rather than exponentially1

and must be captured to resolve particle dynamics.
A key component of all computational methods for Stokes

flow is the efficient evaluation of the action of the singular or reg-
ularized Green’s function for Stokes flow among a large number
of particles. Specifically, given forces (and sometimes also torques)
on many source points, the goal is to compute the resulting (lin-
ear and sometimes also angular) velocities on many target points,
usually the same as the source points. While boundary integral
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methods typically use the singular Green’s function, most com-
putational methods used for large-scale suspensions are based on
a regularized Green’s function. There are four popular regular-
izations: the Rotne–Prager–Yamakawa (RPY)2,3 tensor, regularized
Stokeslets,4 immersed boundary (IB) kernels,5 and the Force Cou-
pling Method (FCM) kernel.6–10 The RPY, IB, and FCM kernels
regularize (smooth) the singularity at both the source and target; this
is crucial to maintain the symmetric positive definite (SPD) nature
of the hydrodynamic mobility matrix, as is necessary for Brownian
Dynamics (BD) methods.

Here, we develop a fast method for Stokes suspensions in dou-
bly periodic (DP) geometries with one or two confining walls in
the aperiodic direction. Our method is closely related to the force
coupling method of Yeo and Maxey,8 but with several important
differences that increase both the flexibility and the efficiency of
the approach. In brief, we employ a non-Gaussian envelope func-
tion11 that allows accurate computations with far fewer grid cells
per particle, as in immersed boundary methods (IBM),12 and also
develop a novel spectral Stokes solver based on a recent work by
some of us on fast methods for electrostatics in doubly periodic
geometries.13

The hydrodynamic interaction between two distinct spherical
particles or blobs of radius a at positions r(1) and r(2) can be cap-
tured by a 3 × 3 mobility tensor that gives the velocity of one of the
particles for a given force acting on the other. This hydrodynamic
mobility tensor can be approximated in the far field as

O (r(1), r(2)) = ∫ δa (r(1) − r′)G (r′, r′′)

×δa (r(2) − r′′) dr′dr′′, (1)

where G is Green’s function for Stokes flow with the specified
boundary conditions. Here, δa(r) is a regularized “delta function”
or envelope function6 that is typically radially symmetric, δa(r)
≡ δa(r), when the particles are sufficiently far from boundaries.
It is important to point out that the blobs do not have to rep-
resent actual physical spherical colloids; one can build physical
particles as a collection of blobs, including non-spherical rigid
(passive or active) particles,14–18 which we have termed as rigid
multiblobs, or flexible particles, such as semiflexible fibers.19,20 If
the blobs represent actual spherical colloids, additional near-field
lubrication corrections can be added to improve upon the far-field
accuracy;10,15,21–23 this requires torques in addition to forces, as we
do in Sec. II.

Regardless of the context, a key task is to evaluate for N blobs
their far-field velocity U from the applied forces F through the action
of the mobility matrix M, U =MF,

∀i : U(i) =
N

∑
j=1

O (r(i), r( j)
) F( j), (2)

in time linear in the number of blobs N. Note that the form of (1)
guarantees that the mobility matrix is SPD by construction since G
is an SPD kernel, and the regularization is applied both at the source
and the target.

The specific choice of δa as a delta function on the surface
of a sphere of radius a, δa(r) = (4πa2

)
−1 δ (r − a), results in the

widely used Rotne–Prager–Yamakawa (RPY) tensor.24–26 When the

kernels do not overlap the boundaries, one can transform (1) into a
differential form by employing the Faxén differential operator

O (r(1), r(2)) ≈ (I +
a2

6
∇

2
r′)(I +

a2

6
∇

2
r′′)G(r

′, r′′)∣ r
′
=r(1)

r′′=r(2). (3)

This analytical simplification allows for explicit evaluation of the
RPY kernel, not just in an unbounded domain but also in a half-
space above a no-slip wall24 because for a single no-slip boundary
there is a relatively simple image construction for G due to Blake.27

This image construction has also enabled the development of fast
methods for evaluating (2) for a single wall, based on either (flexible
periodicity) fast multipole method28,29 or the fast Fourier trans-
form (FFT).30,31 For triply periodic (TP) domains, the Positively
Split Ewald (PSE) method26 for evaluating (2) (and also generat-
ing Brownian velocities) for the RPY kernel provides the basis for
fast Stokesian dynamics.15 However, it remains a challenge to con-
struct a similarly efficient method for confined suspensions since
PSE uses Fourier representations in a key way for each component
of the method (Stokes solver, generating Brownian increments, and
Ewald splitting).

In principle, greater flexibility with respect to boundary con-
ditions can be achieved by replacing analytical Green’s functions
with a grid-based Stokes solver.32 This requires replacing the sin-
gular surface delta function form of δa(r) with a smooth function
that can be resolved on a grid. In the FCM, a Gaussian envelope
function δa is used, which allows for analytical calculation of O in
an unbounded domain;6,7 in numerical methods, the Gaussian is
truncated. By contrast, in the IBM, δa is a discrete grid function
specifically constructed to maximize grid invariance,5,12,17 and the
double convolution in (1) is discrete. This makes all IBM results
grid- and solver-dependent, without a direct continuum limit.

We develop a method that combines favorable features of FCM
and IBM. Namely, we maintain the continuum representation (1)
from FCM; however, we do not use a Gaussian envelope but rather
use the “exponential of a semi-circle” (ES) kernel proposed by Bar-
nett for its efficiency in the context of non-uniform FFTs.11 Not only
does this kernel allow for greater flexibility in tuning the hydrody-
namic radius of the particles33 but also allows us to use many fewer
grid cells per particle than for a Gaussian kernel, comparable to the
IBM, while still solving the continuum equations to several digits
of accuracy. Specifically, for about two–three digits of accuracy, we
need four grid cells per particle (in each dimension) if only trans-
lational velocity is required, and five or six if rotational velocities
are also required. The grid independence of the results makes them
transferable and allows us to separate the Stokes solver from the
physics (i.e., the problem has a solution without a discretization). We
find that O computed with the ES and Gaussian kernels are indistin-
guishable, in practice. We employ an image construction following
Yeo and Maxey8 (also used in the IBM17,34) to generalize (1) to the
relevant-in-practice case when some of the blob kernels overlap the
boundaries; this is considerably harder to do for the RPY kernel and
has required ad hoc fixes in past work by some of us.35

For TP domains, one can easily solve the Stokes equations
spectrally in Fourier space, but this is considerably harder when
boundaries are present. In Sec. III, we use some of the ideas applied
to the Poisson equation in Ref. 13 to develop a Stokes solver for DP
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geometries that are unbounded or confined by one or two bound-
aries in the aperiodic direction. Specifically, we focus on bottom wall
(BW) DP geometries, with a single wall at z = 0, and slit channel
(SC) DP geometry, confined by two walls at z = 0 and z = H, but the
Stokes solver can handle more flexible boundary conditions in the
aperiodic direction. Our novel fluid solver makes it possible to han-
dle geometries that are partially unbounded in one direction, unlike
in existing IBM or FCM implementations based on more traditional
grid solvers, such as finite differences or finite elements.36 Our fluid
solver has the additional advantage that its implementation requires
only calls to the three-dimensional (3D) FFT with an oversampling
factor of 2 in the aperiodic direction, combined with trivially paral-
lelizable one-dimensional pentadiagonal boundary value solvers in
the z direction. We use this to implement the method on graphical
processing units, achieving linear scaling up to as many as one mil-
lion particles, with scaling constants much better than the existing
fast methods29 for the types of problems we study here. It is impor-
tant to note that Srinivasan and Tornberg have recently developed
a sophisticated method based on 3D FFTs for the singular Stokes
Green’s function with a bottom wall geometry (using images) and
flexible periodicity.30,31 Our approach is different and specialized
to doubly periodic geometries, is conceptually simpler, and affords
flexibility in the boundary conditions in the unbounded direction. It
is beyond the scope of this work to give a thorough comparison of
the different approaches.

In Sec. III, we also study how to choose the parameters of the
ES kernel to achieve the desired accuracy and effective blob hydro-
dynamic radius with the coarsest possible solver grid. In Sec. IV,
we perform several validation tests examining the self and pair
mobility of particles in BW and SC geometries and show that the
method produces results in agreement with existing theoretical or
numerical predictions. In Sec. V, we demonstrate that it is possi-
ble to generate stochastic (Brownian) particle displacements with
covariance proportional to M using the Lanczos method37,38 in a
modest number of iterations independent of the number of par-
ticles, for both BW and SC geometries. This allows us to replace
the core hydrodynamic routines used in the Stokesian dynamics
method developed in Ref. 22 and the rigid multiblob BD meth-
ods developed in Ref. 18 with new linear-scaling implementations
that are substantially more efficient for a sufficiently large number
of particles.

These new computational developments enable us to perform
larger-scale studies of the dynamics of confined microroller suspen-
sions than previously feasible (see Sec. V). After validating that the
results presented by some of us in Ref. 22 are free of finite-size effects,
we explore what a top wall does to a driven dense suspension of
colloidal microrollers. We find that while the suspension maintains
a two-layer structure above a single bottom wall, in a slit channel,
the collective velocity is substantially reduced due to the increased
confinement, as expected.

II. MODEL FORMULATION
We develop a method to solve the Stokes equations

η∇2u −∇p = −f, (4)

∇ ⋅ u = 0 (5)

in an xy doubly periodic domain of size [x y] ∈ [−Lx, Lx]

× [−Ly, Ly],39 with z ∈ [0,∞); we refer to this as a bottom wall (BW)
geometry. We will return later to the case of a slit channel (SC) geom-
etry with two walls at z = 0 and z = H, for which z ∈ [0, H]. Here,
u = [u v w]

⊺ is the velocity field of the fluid, p the pressure, η the
viscosity, and the body force f = [ f g h]

⊺ represents particles. To
close the problem, we impose tangential slip boundary conditions
(BCs) at z = 0, i.e.,

u∣z=0 = uwall
= [uwall vwall 0]

⊺

, (6)

where uwall
(x, y) is a smooth function giving a prescribed slip

velocity (uwall
= 0 for no-slip boundaries) along the wall (e.g., elec-

trophoretic slip), and we require boundedness of u as z →∞. For all
of the results and tests presented in this study, we use uwall

= 0.
The source term f is restricted to the domain limits (i.e.,

f (z ∉ [0, H]) = 0) and consists of regularized monopoles and
dipoles with envelope functions ΔM and ΔD centered around
particles or blobs, i.e.,

f (x) =
N

∑
j=1
[F( j)ΔM(x − r( j)

) +
1
2
∇ × (τ( j)ΔD(x − r( j)

))], (7)

where x = [x y z]
⊺ and r( j)

= [x( j) y( j) z( j)]
⊺ is the jth particle’s

location with j = 1, . . . , N, and F( j) and τ( j) are the force and
torque of the jth particle. Here, ΔM and ΔD are compactly sup-
ported, smooth, regularized delta functions called kernels in the
immersed boundary method (IBM), or envelopes in the Fast Cou-
pling Method (FCM). In the classical FCM, the envelopes are
(truncated) Gaussians,

ΔM/D(x) =
1

√

8π3gM/D
6

exp
⎛

⎝
−
∥x∥2

2g2
M/D

⎞

⎠
, (8)

where gM = Rh/
√

π and gD = Rh/(6
√

π)
1
3 , with Rh as the effective

hydrodynamic radius of a particle/blob.
If a particle is closer to the wall than a distance zim so that its

kernel overlaps the wall, we add the negative of the particle’s enve-
lope centered at its image point about the wall. This ensures that the
force/torque decays to zero as a particle approaches the wall. As a
result, if z( j)

< zim, we replace the envelopes ΔM and ΔD in (7) with

ΔW
M/D (x − r( j)

) = ΔM/D (x − r( j)
) − ΔM/D (x − r( j)

im ), (9)

where r( j)
im = r( j)

− 2êz(êz ⋅ r( j)
) is the particle’s point of reflection

about the bottom wall, and êz = [0 0 1]
⊺. In the FCM, Yeo and

Maxey8 put a positive sign in (9) for ΔD to ensure that the angu-
lar velocity of a particle in simple shear flow is unaffected by the
proximity to the wall. We put a negative sign to ensure that all
components of the particle mobility go to zero at the wall. This is
a modeling choice, and it is important to realize that (9) is not an
exact image construction for a no-slip wall.30 For a free-slip bound-
ary, such as a gas–liquid interface, it is straightforward to make an
exact image construction; see, for example, Appendix A in Ref. 40.

Our goal is to compute the motion of each of the particles for
dynamic simulations. Suppose we have solved the Stokes equations
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for the fluid velocity u; then, the linear and angular velocities of the
particles, denoted as U ( j) and Ω( j), can be obtained through the
following volume integrals over the envelopes:

U( j)
= ∫

x
u(x)ΔM(x − r( j)

)dx, (10)

Ω( j)
=

1
2∫x
(∇ × u(x))ΔD(x − r( j)

)dx, (11)

with the understanding that ΔM/D get replaced by ΔW
M/D for particles

close to a wall.
In our own variant of FCM, we will not use a Gaussian ker-

nel; rather, we will employ a compactly supported Exponential of a
Semicircle (ES) kernel11 optimized for numerical efficiency in spec-
tral methods, as we discuss in detail in Sec. III E. Other kernels can
be used as well, as long as their Fourier transform decays sufficiently
fast in the wavenumber.

III. STOKES PROBLEM
We develop a doubly periodic+correction Stokes solver based

on the observation that the original problems (4) and (5) can be
separated into two subproblems, namely, the doubly periodic “DP”
problem and the “correction” problem. For the DP subproblem,
we keep the source terms f but there is no wall present (i.e., open
BCs in z). The correction subproblem has walls but has no forcing, so
it can be solved analytically using a plane-wave expansion. The total
solution is then the sum of the solutions to the two subproblems.

Below, we detail our solution method for the bottom wall (BW)
geometry with a no-slip wall. Appendix A summarizes the method
for the slit channel (SC) geometry with somewhat more general par-
tial slip BCs. The Stokes solver can also handle open boundaries in
the z direction if the total force on the domain is zero. In order to
uniquely define the self-mobility of a particle, one must therefore
add a negative tail to the kernel to account for the backflow around
the particle, similar to how in TP domains the k = [kx ky kz]

⊺

= 0
component of the solution is set to zero, where k is the wavenumber.
We defer the discussion of backflow in unbounded DP geometries
to future work.

A. Doubly periodic Stokes solver
For the “DP” subproblem, we solve a doubly periodic Stokes

problem for uDP and pDP,

η∇2uDP −∇pDP = −f, (12)

∇ ⋅ uDP = 0. (13)

Here, the source term f is the same as (4), and the doubly periodic
domain is [x y z] ∈ [−Lx, Lx] × [−Ly, Ly] × (−∞,+∞) with free-
space BCs in z, i.e., pDP and uDP are bounded as z → ±∞ and there
is no wall present. Note that in our spectral DP solver, we will solve
uDP in a bounded domain [x y z] ∈ [−Lx, Lx] × [−Ly, Ly] × [0, H]
for either bottom wall or slit channel geometry. For a slit channel, (9)
ensures that f is smooth on and vanishes outside of z ∈ [0, H], and
for the bottom wall case, we will assume that it is possible to find a
maximum height H so that f smoothly goes to zero for z ∉ [0, H].

Also, note that the system represented by (12) and (13) is not well-
posed if ∫x f (x)dx ≠ 0, where the integration is over the simulation
box [−Lx, Lx] × [−Ly, Ly] × [0, H]; however, this problem manifests
in our method only for [kx ky]

⊺

= 0, which we will handle separately
in Sec. III C. As we now show, the open boundary condition can
be reduced to z ∈ [0, H] through the Dirichlet-to-Neumann map, as
proposed for the Poisson equation by Maxian et al.13

1. Solution for p DP

First, take the divergence of (12) and use (13) to obtain

∇
2pDP = ∇ ⋅ f . (14)

Fourier transforming in the xy domain yields

(∂2
z − k2

) p̂DP(k, z) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

ik

∂z

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⋅ f̂ (k, z). (15)

Here, k = [kx ky]
⊺

= [nx ny]
⊺π/Lx/y with nx/y ∈ Z, and k = ∥k∥. For

z ∉ [0, H], f = 0 and the general solution to (15) is

p̂DP(k, z ≥ H) = C1e−kz , p̂DP(k, z ≤ 0) = C2ekz , (16)

where we used the boundedness of p̂DP as z → ±∞. The solutions
(16) imply simple Dirichlet-to-Neumann maps for p̂DP at z = 0− and
z = H+. Since p̂DP is continuously differentiable across the (artificial)
computational boundaries at z = 0 and z = H, the same maps apply
at z = H− and z = 0+ as well, giving

(∂z + k) p̂DP(k, z = H) = 0, (∂z − k) p̂DP(k, z = 0) = 0. (17)

Therefore, we can solve the boundary value problem (BVP) (15) on
z ∈ [0, H] subject to the boundary conditions given by (17). This
approach was proposed by some of us for the Poisson equation in
Ref. 13.

2. Solution for uDP

To find the velocity, we take an xy Fourier transform of (12),

− η(∂2
z − k2

) ûDP(k, z) +
⎡
⎢
⎢
⎢
⎢
⎢
⎣

ik

∂z

⎤
⎥
⎥
⎥
⎥
⎥
⎦

p̂DP(k, z) = f̂ (k, z). (18)

Again, f = 0 outside domain z ∈ [0, H], giving

∂2
z ûDP − k2ûDP =

ikx

η
p̂DP, (19)

∂2
z ŵDP − k2 ŵDP =

1
η
∂zp̂DP. (20)

Using the solution for p̂DP in (16), and enforcing boundedness of
ûDP as z → ±∞, we find the general solution for k ≠ 0,

ûDP(k, z ≥ H) = Axe−kz
− i

kxC1

2kη
ze−kz , (21a)

ûDP(k, z ≤ 0) = Bxekz
+ i

kxC2

2kη
zekz. (21b)
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Due to the xy symmetry of the problem, solutions to v̂DP are
analogous and obtained by replacing x with y in (21).

From (21), we get the following Dirichlet-to-Neumann maps at
the boundaries:

(∂z + k)
⎡
⎢
⎢
⎢
⎢
⎢
⎣

ûDP(k, H)

v̂DP(k, H)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −
ik

2kη
p̂DP(k, H),

(∂z − k)
⎡
⎢
⎢
⎢
⎢
⎢
⎣

ûDP(k, 0)

v̂DP(k, 0)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
ik

2kη
p̂DP(k, 0).

(22)

Similarly, the general solution for ŵDP is

ŵDP(k, z ≥ H) = Aze−kz
+

C1

2η
ze−kz , (23a)

ŵDP(k, z ≤ 0) = Bzekz
+

C2

2η
zekz. (23b)

which implies the following boundary conditions:

(∂z + k)ŵDP(k, H) =
1

2η
p̂DP(k, H),

(∂z − k)ŵDP(k, 0) =
1

2η
p̂DP(k, 0).

(24)

We can solve the BVP problems (18) on z ∈ [0, H] with bound-
ary conditions (22) and (24) to find the velocity field using a spectral
(Chebyshev) solver, as described in Sec. III D. It is important to note
that solving the pressure and velocity BVPs only requires solving
pentadiagonal linear systems.

B. Correction solve
The correction subproblem solves the following homogeneous

Stokes problem for ucorr and pcorr:

η∇2ucorr −∇pcorr = 0, (25)

∇ ⋅ ucorr = 0, (26)

where the doubly periodic domain is [x y z] ∈ [−Lx, Lx]

× [−Ly, Ly] × [0,+∞) and with slip on the bottom wall

ucorr∣z=0 = uwall
− uDP∣z=0, (27)

where uDP is the solution to the DP problem. Note that, by lin-
earity, it is clear that the sum of the solution to the two sub-
problems in the upper-half plane gives the solution to the original
problem (4)–(6), i.e.,

u = uDP + ucorr, and p = pDP + pcorr. (28)

The correction subproblem (25)–(27) can be solved analytically.

1. Solution for pcorr

Taking the divergence of (25) we obtain a Laplace equation for
pressure

Δpcorr = 0. (29)

After a Fourier transform in xy, we get a 1D equation for each
Fourier mode k,

∂2
z p̂corr(k, z) − k2p̂corr(k, z) = 0. (30)

Using the boundedness of p̂corr as z →∞, the general solution of
(30) is

p̂corr(k, z) = C0e−kz. (31)

2. Solution for ucorr

Taking the Fourier transform of (25) in xy and using (31), we
obtain

η(k2
− ∂2

z )ûcorr(k, z) = −ikxC0e−kz , (32)

η(k2
− ∂2

z )ŵcorr(k, z) = kC0e−kz , (33)

with general solutions for k ≠ 0 given by

ûcorr(k, z) = −
C0ikx

2ηk
ze−kz

+ Cxe−kz , (34)

ŵcorr(k, z) =
C0

2η
ze−kz

+ Cze−kz , (35)

and analogously for v̂corr. To determine the unknown coefficients,
we consider the boundary conditions on the wall. Let ucorr∣z=0

= uwall
− uDP∣z=0 = [u0(x, y) v0(x, y) w0(x, y)]

⊺, i.e.,

ûcorr(k, 0) = û0(k), v̂corr(k, 0) = v̂0(k),
ŵcorr(k, 0) = ŵ0(k). (36)

Substituting (34) and (35) into (36) gives three of the unknown
coefficients

Cx = û0(k), Cy = v̂0(k), Cz = ŵ0(k). (37)

To find the coefficient C0, we take an xy Fourier transform
of (26),

ikxûcorr(k, z) + iky v̂corr(k, z) + ∂z ŵcorr(k, z) = 0. (38)

Evaluating (38) at z = 0 and also using the boundary conditions (36),
we obtain

∂z ŵcorr(k, z = 0) = −ikxû0(k) − iky v̂0(k), (39)

which coupled with (35) gives

C0 = 2η(kŵ0(k) − ikxû0(k) − iky v̂0(k)). (40)

Substituting the coefficients back to (34) and (35), we obtain an
explicit correction solution in xy Fourier space,

p̂corr(k, z) = 2η(kŵ0(k) − ikxû0(k) − iky v̂0(k))e−kz , (41)

ûcorr(k, z) = −
kx

k
(ikŵ0(k) + kxû0(k) + ky v̂0(k))ze−kz

+ û0(k)e−kz , (42)

J. Chem. Phys. 158, 154101 (2023); doi: 10.1063/5.0141371 158, 154101-5

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0141371/16825670/154101_1_5.0141371.pdf

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

v̂corr(k, z) = −
ky

k
(ikŵ0(k) + kxû0(k) + ky v̂0(k))ze−kz

+v̂0(k)e−kz , (43)

ŵcorr(k, z) = (kŵ0(k) − ikxû0(k) − iky v̂0(k))ze−kz

+ŵ0(k)e−kz. (44)

C. Zero mode (k = 0)
Sections III A. and III B provide the DP and correction solu-

tions for k ≠ 0. We treat the k = 0 mode here for the overall solution
without separating it into subproblems.

To find ŵ(0, z), we use the continuity equation (5) in Fourier
space for kx = ky = 0,

∂z ŵ(0, z) = 0. (45)

As a result, ŵ(0, z) is just a constant, and the no-slip boundary
conditions at z = 0, given in Fourier space by

û(k, 0) = [û wall
(k) v̂ wall

(k) 0]
⊺

, (46)

indicate that

ŵ(0, z) = 0. (47)

The momentum equation (4) in Fourier space for k = 0 can be
expressed as

− η∂2
z û(0, z) +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

∂z

⎤
⎥
⎥
⎥
⎥
⎥
⎦

p̂(0, z) = f̂ (0, z) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f̂ (0, z)

ĝ(0, z)

ĥ(0, z)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (48)

Using (47), the z component of (48) simplifies to

∂zp̂(k = 0, z) = ĥ(k = 0, z), (49)

which yields the zero mode solution for the pressure,

p̂(0, z) = ∫
z

0
ĥ(0, z′)dz′, (50)

where we set p̂(0, 0) = 0 as a convention.
To find the k = 0 mode solution for û (or v̂ due to symmetry

in xy), note that the x component of (48) is

∂2
z û(0, z) = −

f̂ (0, z)
η

. (51)

We have a no-slip BC at z = 0 given by (46). To find a boundary
condition at z = H, note that for z > H, ∂2

z û(0, z) = 0, which along
with the boundedness of velocity as z →∞, indicate that û(0, z ≥ H)
is some constant. Since ∂zû(0, z) is continuous across z = H and it
is a constant for z > H, we conclude that ∂zû(0, H) = 0. As a result,
the k = 0 mode of û can be computed by solving the BVP (51) with
the following boundary conditions:

û(0, 0) = û wall
(0), ∂zû(0, H) = 0, (52)

and analogously for v̂.

D. Stokes solver
Our spectral doubly periodic Stokes solver is based on the

method proposed for the Poisson equation in Ref. 13, where more
details are provided. We use FFT in the doubly periodic xy plane
and Chebyshev polynomials in the z direction to achieve spec-
tral accuracy. The grid is uniform in the xy plane, with spac-
ing hx/y = 2Lx/y/Nx/y, where Nx/y is the total number of points
in each direction, and nonuniform in the z direction, with grid
points placed on a type-2 Chebyshev grid, including the end-
points at z = 0 and z = H. The number of Chebyshev grid points,
Nz , is chosen such that the coarsest spacing in the z direction
(occurring at the midplane) is comparable to hx/y [see Eq. (108)
in Ref. 13].

In principle, we could take a 2D FFT of (12) and (14) to
find the discrete forms of (15) and (18), respectively, and solve
the resulting BVPs in the z direction in Chebyshev space. Instead,
following Maxian et al.,13 we take advantage of the Chebyshev com-
patibility with the Fourier transform41 and solve the problem in
3D Fourier–Chebyshev space.42 This allows us to use 3D FFTs
in the implementation, which gives greater flexibility for optimiz-
ing parallel performance. We have implemented the method in
CUDA for Graphical Processing Units (GPUs) in the UAMMD
library,43 using the NVIDIA cuFFT library. Both central process-
ing unit (CPU) and GPU implementations are freely available at
https://github.com/stochasticHydroTools/DoublyPeriodicStokes.

The following steps summarize our solution algorithm for the
Stokes equation:

(1) Spread the right-hand side (RHS) f of the momentum equa-
tion (12) on the grid using the ES kernel (cf. Sec. III E).
Since the ES kernel is compactly supported, each particle
only spreads to ∼m3 grid points. In the z direction, this is
only true if near the midplane; more than m points will be
required near the boundaries where the Chebyshev grid is
finer. When the kernel extends outside of the domain over a
physical boundary,44 we fold the contribution outside of the
domain back into the domain using a negative mirror image
[see (9)]. We will return to spreading torques after this list.

(2) Take a 3D FFT of f to compute the Chebyshev coefficients of
f̂ (k, z). Then, use Chebyshev differentiation to compute the
Chebyshev coefficients of ∂z f̂ (k, z).42

(3) For each k ≠ 0, solve the BVP (15) with boundary conditions
(17) for the Chebyshev coefficients of p̂DP(k, z). Then, evalu-
ate p̂(k, z = 0/H) by direct summation to assemble boundary
conditions (22) and (24), and solve the BVP (18) for the
Chebyshev coefficients of ûDP(k, z). See Appendix A in Ref.
13 for details of the BVP solver, which is based on Ref. 45; this
efficient and stable solver only requires solving pentadiagonal
systems.

(4) Evaluate, by direct summation, ûDP(k, z = 0) for the BW
geometry and also ûDP(k, z = H) for the SC geometry,46 and
compute the RHSs of (36) and (A2), respectively. Evaluate
the correction solutions, p̂corr(k, z) and ûcorr(k, z) on the
Chebyshev grid, using the analytical expressions (41)–(44)
for BW and (A4)–(A6) for SC geometries.

(5) Evaluate the k = 0 mode solution for p̂(0, z) using (50)
and Chebyshev integration, and solve the BVP given
by (51) and (52) for the BW and (A12) for the SC
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geometry to find û(0, z), and analogously, v̂(0, z). Set
ŵ(0, z) = 0.

(6) For all k, take a 1D FFT in the z direction to compute
the Chebyshev coefficients of the correction and zero-mode
solutions and add them to p̂DP and ûDP.

(7) Back transform to real space using a 3D iFFT to get p(x) and
u(x).

(8) Interpolate u(x) at the particle positions via (10) and
trapezoidal+Chebyshev quadrature to find the linear velocity
of the particles. For each particle, this requires the same grid
values (but with additional z-dependent quadrature weights)
as in the spreading in step 1.

When torques are also applied, they can be spread in two
ways. The first way, which is more straightforward to implement
but also more computationally expensive, is to compute the deriva-
tives needed for the curl operator in Fourier–Chebyshev space;
this requires an additional forward 3D FFT. Analogously, in the
interpolation step, the curl of the velocity is first computed in
Fourier–Chebyshev space and then transferred back to real space
with an additional 3D iFFT. These additional FFTs can be avoided
by instead using the derivative of the ES kernel to spread and inter-
polate velocity.31,47 We have employed both of these approaches to
spread torques and interpolate velocity in a CPU-based implemen-
tation and confirm that both preserve the desired accuracy. Due to
the higher implementation complexity of the second approach,48

in the GPU code, we have presently implemented only the
first way.

It is important to emphasize that all steps in the method scale
linearly, or log-linearly, in either the number of particles or the num-
ber of grid points. The BVP solutions along the z direction require
solving pentadiagonal linear systems (see Appendix A in Ref. 13),
which makes that step need only a linear amount of memory and
computational effort in Nz . Combined with the independence of
the BVP solves for each k, this makes the algorithm particularly
well-suited for efficient execution on GPUs.

E. Exponential of a semicircle kernel (ES)
In order to reduce the costs associated with representing par-

ticles on the grid, we replace the Gaussian kernel traditionally used
in the FCM formulation with the exponential of a semicircle (ES)
kernel.11,49 Specifically, as in the IBM, we take ΔM/D to be tensor
products of a scalar kernel ϕ,

ΔM/D (x; αM/D, βM/D) =
3

∏
i=1

ϕ (xi; αM/D, βM/D), (53)

where

ϕ(z; α, β) = (∫
α

−α
e

β(
√

1−( z
α )

2
−1)

dz)
−1

×

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e
β(
√

1−( z
α )

2
−1)

, ∣
z
α
∣ ≤ 1

0, otherwise.
(54)

Here, (α, β) are fixed parameters uniquely tied to the kernel, which
is compactly supported on [−α, α]. If the kernel we use for spreading

and interpolation has a simple Fourier transform, we can determine
the effective hydrodynamic radius Rh of a particle represented by
such a kernel analytically. For example, in the seminal works on
FCM applied to Stokes flow,6,7 the authors show that for Gaussian
monopole and dipole envelopes given by (7) with standard devia-
tions gM and gD, the length scale of the kernels is related to the par-
ticle radius through gM = Rh/

√
π and gD = Rh/(6

√
π)1/3. However,

the ES kernel does not have a simple analytical Fourier transform,
so we will numerically determine the relationship between Rh and
(α, β).

Let us denote with m the number of grid cells in the support
of the kernel in each dimension. For a regular grid with spacing h,
α ≤ 1

2 hm for the ES kernel, but we typically take α = 1
2 hm. Kernels,

such as the Peskin kernels used in IBM,5 have no free parameters
to change Rh once m is chosen. In contrast, the ES kernel affords
increased flexibility with the additional parameter β. So, particles of
different radii can be represented with the same support α, but dif-
ferent β values. Moreover, the ES kernel has numerically compact
support (to some tolerance) in real and Fourier space, and is, there-
fore, well suited for spectral discretizations of the Stokes problem.
That is, the discrete RHS of the Stokes problem (4) will decay rapidly
in Fourier space.

To find an appropriate value for β, we consider the mobility of
an isolated sphere. A sphere of radius Rh will translate and rotate
with linear and angular velocities U and Ω in an unbounded space
under the action of a force F = 6πηRhU and torque τ = 8πηR3

hΩ.
For a TP domain with a cubic box of size L3, periodic correc-
tions to Stokes’ law can be expressed as an asymptotic expansion
in Rh/L,50

FIG. 1. Dimensionless hydrodynamic radius function c(β) for the ES kernel for
translation and rotation. For 30 particle positions distributed uniformly in one
grid cell, and for several values of m and β, we extrapolate the computed
radii to L→∞. Specifically, we take h = 1, L ∈ {60, 95, 130, 165, 200}, m ∈
{4, 5, 6, 7, 8, 9, 10, 11, 12}, and β/m values linearly spaced in [1,3]. All of the data
collapse on a master curve (depicted in solid black) that can be fit by a polynomial,
up to a small error due to loss of translational invariance.
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F ≈
6πηRhU

1 − KM
Rh
L

, τ ≈
8πηR3

hΩ
1 − KD(

Rh
L )

3 , (55)

to leading order, where KM and KD are constants independent of Rh
and L. Our numerical results indicate that the same form applies to
doubly periodic domains as well, but with different constants; in this
section, we use a TP system so that the grid spacing h is uniform.

By the scale invariance of the ES kernel under changing the unit
of length, there exists a function c(β) such that

Rh(α, β) = 2α c(β) = (hm) c(β). (56)

To obtain c(β) empirically, and determine an “optimal” β, we take a
single particle in a TP domain and apply a unit force or torque on it,
and measure its linear and angular velocities. If we keep the position
of the particle (relative to the grid) and α fixed, we can use extrapola-
tion to L→∞ based on (55) to obtain Rh. Due to numerical errors,
Rh varies slightly based on the exact position of the particle relative
to the grid, resulting in a numerical loss of translational invariance.
In Fig. 1, we show c(β) estimated from the mean ⟨Rh⟩, along with
a polynomial fit. We emphasize that c(β) is an intrinsic property
of the ES kernel and is independent of the Stokes solver used, as
long as the solver is sufficiently accurate. This is assured to about
three digits by our use of a spectral solver for any m ≥ 4; smaller
m will have too few points per particle to resolve the envelope. The
loss of translational invariance is purely numerical and gets worse
for smaller m.

In Fig. 2, we evaluate percent errors in the extrapolated radii at
each m and for each β in terms of a 95% confidence interval. That is,
we report

% error =
4σ(m)
⟨Rh(m)⟩

× 100%, (57)

in which σ(m) is the standard deviation from the mean radius
⟨Rh(m)⟩. We see that for the monopole, m = 12 and β/m ≈ 1.9 gives
the smallest %-error, while for the dipole, m = 12 and β/m ≈ 1.7
are the optimal settings. From an extrapolation with these highly
resolved settings, we find KM = 2.83 and KD = 4.19.51

Note, in practice and for the sake of efficiency, we use
m = 4, 5, 6, for which β/m ≈ 1.75 and β/m ≈ 1.6 are optimal settings
for the monopole and dipole kernels, respectively. This is to be com-
pared to the optimal value β/m ≈ 2.7 suggested by Barnett et al.11 for
the non-uniform FFT algorithm. The precise values of β and m for
each particle species need to be selected by balancing several con-
siderations. First, decreasing Rh/h = c(β)m means fewer grid cells in
the support of the particle kernel and, therefore, higher efficiency.
However, translational invariance ought to be preserved to some
target tolerance, requiring keeping β/m in a narrow range around
the minima of error seen in Fig. 2. Finally, L/h must be an inte-
ger, preferably an FFT-friendly integer. The target tolerance for us
is 2–3 digits of accuracy. A final challenge is that the hydrodynamic
radius needs to be matched between the monopole and dipole terms.
If we use m = 4 for the monopole, which is the smallest possible to
ensure sufficient grid invariance, we find that we require m ≥ 5 for

FIG. 2. Percent error (variability) in the effective hydrodynamic radius of a particle represented by the ES kernel as the particle moves relative to an underlying triply
periodic (TP) uniform grid of spacing h. For a given width m, there is an optimal β/m that yields the smallest spread in the calculated effective radius (caused by the loss of
translational invariance).
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TABLE I. Optimal combinations of mM , mD, βM , βD along with minimal errors in trans-
lational invariance (57) of the effective hydrodynamic radius Rh (equal for monopole
and dipole up to 3 digits), when both force and torque are applied (M and D).

mM(=mD) 5 6

Rh/h 1.560 1.731
βM/mM 1.305 1.327
βD/mD 2.232 2.216
% errorM 0.90 0.15
% errorD 0.81 0.21

TABLE II. Same as Table I but only forces are applied (M).

mM 4 5 6

Rh/h 1.205 1.344 1.554
βM/mM 1.785 1.886 1.714
% errorM 0.37 0.05 0.02

the dipole to match Rh and get acceptable accuracy. Table I summa-
rizes the values we suggest for m = 5 and m = 6 (it is best to keep m
the same for the monopole and dipole kernels). When only transla-
tional motion is required (e.g., with the rigid multiblob method17),
m = 4 can be used; Table II summarizes the suggested values. Our
public domain software release contains a script that suggests “good”
values for m and β given L and Rh as inputs. When there are more
than one particle species, the selection becomes more involved but
still possible.33

IV. SELF AND PAIR MOBILITIES
We validate our solver against theoretical predictions on basic

mobility problems in the bottom wall (BW) and slit channel
(SC) geometries with N = 1 or N = 2 particles. Specifically, for
several particle configurations, we determine the mobility matrix
M ∈ R6 N×6 N , relating velocities to forces,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

U

Ω

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Mtt Mtr

Mrt Mrr

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

F

τ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (58)

where M(..)
∈ R3 N×3 N with superscripts t and r denoting the trans-

lational and rotational mobility components, respectively, and F,
τ ∈ R3 N and U , Ω ∈ R3 N are the vectors of force and torque on
the particles and the resulting translation and rotational velocities.
We will refer to certain elements of M using the notation μcd

ab
for diagonal blocks (self-mobility) or νcd

ab for off-diagonal blocks
(pair-mobility). This corresponds to prescribing a force or torque
(d = t or r) in the b direction (b = x, y, or z) on one particle,
and measuring the linear or rotational velocity (c = t or r) in the
a direction of the second particle (or the same particle, in the case of
self-mobility). For example, νtr

yx corresponds to the linear velocity in
the y direction of the second particle due to a torque about the x axis
on the first particle, i.e., U(2)y = νtr

yxτ(1)x . Note that νcd
ab = μcd

ab if the two
particles have the same position.

In all tests, we use a box with dimensions Lx/y = L = 76.8Rh,
H = 19.2Rh to allow direct comparison with prior IBM results.17

The components of Mtt , Mtr/rt , and Mrr are normalized by
1/(6πηRh), 1/(6πηR2

h), and 1/(8πηR3
h), respectively. For problems

involving rotation, we use the mM = mD = 6 optimal ES monopole
and dipole kernels (cf. Table I). If the problem only involves
translation, we can use the optimal mM = 4 monopole kernel
(cf. Table II).

A. Self-mobility
Here, we examine the behavior of the linear and rotational

velocity of a particle given some prescribed forces or torques, for
several particle positions relative to the wall(s), in both the BW and
SC geometries.

First, we consider translation–translation self-mobility. In the
BW geometry, we compare our numerical results to the periodized
Rotne–Prager–Blake (periodized RPB) tensor. The RPB formulas24

are for a half-space with no-slip conditions on the bottom wall, valid
only for z ≥ Rh. We periodize them by directly summing over 400
images in the x and y directions to account for the periodic bound-
ary conditions in our doubly periodic simulations (4002 images in
total). We also compare to Faxén’s power series expansions for the
parallel self-translational mobility of a sphere at half and quarter
channel locations [see Eq. (24) in Ref. 34]. In Fig. 3, we plot the paral-
lel [with respect to the wall(s)], μtt

xx = μtt
yy, and perpendicular, μtt

zz , self
mobilities of a blob. All of our numerical results agree with the cor-
responding reference values for both m = 4 and m = 6 for z ≳ 2Rh.
By the image construction (9), the particle mobility goes to zero

FIG. 3. Normalized translation–translation self-mobility, μ̃ tt
= (6πηRh) μtt , above

the lower wall (z ∈ [0, 1
2

H]) in the bottom wall (BW) and slit channel (SC) geome-
tries for m = 6 (empty markers) and m = 4 (filled markers). The reference data
(shown with solid curves) for the BW and SC geometries are from a periodized
Rotne–Prager–Blake (PRPB) tensor24 and numerical results from the immersed
boundary method (IBM),17 respectively. Faxén’s results52 for μtt

xx at z = 1
4

H and

z = 1
2

H in the SC geometry are shown in cyan circles.
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FIG. 4. Normalized rotation–rotation self-mobility, μ̃ rr
= (8πηR3

h) μrr , above the
lower wall at z = 0 in the BW and SC geometries. The reference results, from
PRPB for the BW geometry and a twice resolved grid (m = 12) for the SC geom-
etry, are solid curves. Since H ≫ Rh, the results are nearly identical between the
BW and SC geometries.

smoothly as z → 0 for both the FCM and IBM, but in a kernel/solver-
dependent manner. Nevertheless, only small differences in μtt

zz near
the wall are noticeable in the figure between the RPB, IBM, and FCM
mobilities.

In Fig. 4 we show the parallel, μrr
xx = μrr

yy, and perpendicular,
μrr

zz , rotation–rotation mobility components. Again, our numerical

results are in excellent agreement with the reference evaluations for
z ≳ 2Rh. Since the wall corrections to the rotational components of
the free space RPY tensor in the RPB tensor decay fast like (Rh/z)

3,
μrr

xx and μrr
zz in the BW geometry are nearly indistinguishable from

the same components in the SC geometry. As the blob approaches
the wall, we see a noticeable difference between RPB and FCM for
μrr

xx. Lacking a reference result from other methods, in the SC geom-
etry, we compare to a numerical reference computation on a doubly
refined grid (i.e., h := 1

2 h and m := 2m such that the support α and
the hydrodynamic radius remain constant).

In Fig. 5, we show μtr
yx, the only nontrivial translation–rotation

self-coupling component. Interestingly, the mobility does not decay
to zero as z →∞, as it would for a half-space domain; we display
the non-periodized RPB kernel as dashed red lines in the left panel
to highlight the effect of periodic boundary conditions in x, y. Fur-
thermore, our numerical results for m = 6, and to a lesser extent,
even a doubly refined result with m = 12, exhibit small numerical
oscillations as the particle moves away from the wall.

To better understand the periodic artifacts in μtr
yx, we analyze

the contributions of periodic images of a particle to its self-mobility.
Consider the analytical form of the pairwise mobility νtr

yx (from the
RPB tensor) for two particles, far away from each other, at the same
height z,

ηνtr
yx(z) ≈

1
6π

3r̂z(r̂ x)
2

∥r∥2 , (59)

where

r = [x(1) − x(2) y(1) − y(2) 2z]
⊺

, r̂ =
r
∥r∥

. (60)

FIG. 5. Normalized translation–rotation self-mobility, μ̃tr
yx = (6πηR2

h) μtr
yx , above the lower wall (z ∈ [0, 1

2
H]) in the BW (a) and SC (b) geometries for m = 6 and m = 12

(a doubly refined grid). For the BW geometry (a), we also show the results from PRPB and the half-space non-periodized RPB tensors. Although not shown in this figure,
for both BW and SC geometries, we find that the symmetric analog μrt

xy agrees with μtr
yx well within five digits. For the SC geometry (b), we show the absolute value due to a

sign change for z ≳ 3Rh. The x axis extends to z = 1
2

H, for which μ̃tr
yx = 0 due to symmetry.
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We can approximate the sum of the RHS of (59) over the periodic
images in the xy plane with an integral in polar coordinates. We
find that as z →∞, the approximate sum converges to a constant
∼L−2, and for z ≪ L, it is ∼z/L3. The self-mobility μtr

yx itself decays
like R2

h/z
4. Therefore, the combined mobility (self plus images)

is dominated by the self-term for small z and by the images for
large z. This results in a minimum in μtr

yx(z), at roughly zmin

∼ (L3R2
h)

1/5
, followed by a plateau. If the particle goes above zmin,

the translation–rotation self-coupling is dominated by the periodic
images.

For the slit channel, symmetry is always broken by the presence
of the upper and lower walls, except at the exact center of the chan-
nel z/Rh = H/2. That is, μtr

yx(H/2) = 0, and we exclude this point
from our plot due to the log scale on the y axis. As expected, we
have similar behavior between SC and BW near the wall, and the
numerical oscillations are diminished for both the m = 6 and m = 12
reference computations in the SC geometry. Interestingly, there is
a sign change in μtr

yx in the slit channel for z ≳ 3Rh (likely due to
periodic images), although the coupling is weak.

B. Pair-mobility
Because we use a non-Gaussian tensor product kernel (53), the

pair-mobility for two blobs in an unbounded domain does not have
a strictly isotropic form, even in the absence of discretization errors,
and, furthermore, the pair-mobility is difficult to compute analyti-
cally. In Appendix B, we examine the pair-mobility in the absence of
walls numerically using a (large) TP domain. Our main conclusion
is that the results obtained with the ES kernel are within a percent
of those for a Gaussian kernel and are isotropic to an accuracy of at
least two digits for the kernel and grid choices we selected.

Here, we briefly investigate the behavior of the linear and
rotational relative mobility of pairs of identical particles at the
same distance z from the bottom wall and separated by a dis-
tance d = 3Rh, 4Rh, 8Rh in the x direction. The presented results
here serve solely as consistency checks and validation of our solver
against available analytical and well-established numerical solutions.
In Sec. V B, we investigate in more detail some of the interest-
ing behavior of the translation–translation pair-mobility in a slit
channel.

FIG. 6. Normalized translation–translation pair mobility, ν̃ tt
= (6πηRh)νtt , in the BW (left panel) and SC (right panel) geometries, for a pair of particles, a distance z from the

bottom wall (z ∈ [0, 1
2

H]), the same y coordinate, and distance d = 3Rh, 4Rh, 8Rh away from each other along the x direction. Our results using the ES kernel are shown
with empty and filled markers for m = 6 and m = 4, respectively. The reference results, PRPB for the BW geometry, and m = 12 for the SC geometry, are solid curves.
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First, we examine the pairwise components of νtt in Fig. 6. All
numerical results compare well to the reference results, i.e., RPB in
BW geometry, and a doubly refined result in SC geometry, for both
m = 4 and m = 6. For each mobility component considered, we see
that when the particles are near the wall, greater separation leads to
a reduced magnitude of coupling. This is also the case further away
from the bottom wall, except for νtt

xz . In Fig. 7, we inspect the pairwise
components of νrr . Our numerical results compare very well to the
reference results in either geometry. As for translation–translation,
the coupling decreases with particle separation, except in the case
of the perpendicular–parallel component νrr

xz . Finally, in Fig. 8, we
consider the pairwise components of νtr and see that the refer-
ence results compare well to our numerical results. We highlight
the same effects due to periodicity in xy as seen in Fig. 5 through
the non-periodized RPB kernel (dotted lines) for νtr

yx and νtr
xy. Both

νtr
yx and νtr

xy decay in a half-space as the particles are further from
the bottom wall, but the periodicity in xy leads to a plateau in the
mobility.

V. COLLOIDAL ROLLERS
In this section, we consider a case study of a driven, dense sus-

pension of colloidal microrollers as recently investigated by some of
us.22 In this system, magnetic spherical colloidal particles sediment
into a dense monolayer near a bottom wall/floor. A magnetic field is
used to spin the particles with the axis of rotation parallel to the wall,
which induces a translational motion of the particles along the wall
due to the rotation–translation coupling induced by the presence of
the floor (see μtr

yx in Fig. 5, and νtr
yx and νtr

xy in Fig. 8). A collective
driven steady state is established, and both experimental and numer-
ical results show the existence of two layers of rollers, a slower layer
close to the wall, and a faster layer above the slow one;22 see the inset
in Fig. 13. Since the colloidal layer remains close to the wall in the z
direction but extends far in the xy directions, this system is an ideal
target for our doubly periodic solver.

In Ref. 22, we developed a lubrication-corrected variant of
the Stokesian dynamics method (without stresslet corrections) to
simulate the collective driven dynamics of colloidal rollers and

FIG. 7. Normalized rotation–rotation pair mobility, ν̃ rr
= (8πηR3

h)ν
rr , for the same system as in Fig. 6. Our results using the ES kernel with m = 6 are shown with empty

markers. The reference results, PRPB for the BW geometry, and m = 12 for the SC geometry, are solid curves. Note that μrr
xz goes to zero at the midplane due to symmetry.
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FIG. 8. Normalized translation–rotation pair-mobility, ν̃ tr
= (6πηR2

h)ν
tr , for the same system and labels as in Fig. 6. The half-space non-periodized RPB is also shown for

mobility components νtr
yx and νtr

xy in BW as dashed curves. Although not shown here, for both BW and SC geometries, we find that the symmetric components of νrt agree
with each other to well within five digits at each height. Note that the yx, xy, and zy components of νtr go to zero at the midplane due to symmetry.

found good agreements between computational and experimental
results. In these prior studies, we computed the far-field hydrody-
namic interactions using a GPU-accelerated direct pairwise sum-
mation of the Rotne–Prager–Blake tensor24 generalized to account
for torques/rotation. To approximate the doubly periodic condi-
tions, in these prior works,35 each particle interacted only with
3 × 3 = 9 periodic copies of every other particle. Because of the
quadratic scaling of the direct summation, this increased the cost
of the calculation by as much as two orders of magnitude (i.e., a
factor of 92

= 81), severely limiting scalability to larger numbers of
particles.

Here, we apply our linearly scaling method to the same prob-
lem. In Sec. V A, we validate the linear scaling of our method up
to the memory limitations on the GPU by periodically replicat-
ing a representative configuration from the steady-state conditions
found numerically in Ref. 22. In Sec. V B, we study the conver-
gence of an iterative method to compute the (far-field) Brownian

(stochastic) particle displacements, since efficient and (log-)linear-
scaling dynamic simulations require rapid convergence of the iter-
ative method with several iterations independent of the number of
particles. While we have previously established this for BW geome-
tries,35 here we confirm this to be the case also in SC geometries,
despite the slower decay of the hydrodynamic interactions with par-
ticle distance.1 In Sec. V C, we perform dynamic simulations with a
larger number of particles than previously feasible and compare to
previous results based on the Rotne–Prager–Blake tensor. We also
add a top wall and investigate its influence on the collective dynamics
and structure of the driven suspension.

A. Linear scaling
In this section, we demonstrate the linear scaling of our

GPU-based solver with the number of particles. Figure 9 shows
the computation time as we periodically replicate a representative
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FIG. 9. Time per mobility solve vs number of particles with parameters given in
Table III, on V100 and Titan V NVIDIA GPUs. We replicate a system of 2048 par-
ticles in the xy plane. Particles are uniformly distributed in the planar direction,
with an area packing fraction of ϕ = 0.4, and a bimodal (two-layer) distribution of
heights P(h) above the wall, as shown in the inset. The biggest system contains
663 552 particles and takes 370 ms to compute with UAMMD on a V100 GPU.

configuration of N = 2048 particles22 in the xy plane direction to
increase the number of particles. The original configuration before
replication has a system size Lx/y = L = 128.8Rh and H ≈ 9Rh (see
Table III). We test here the scaling for the case when there are
only forces applied (M, monopole-only, kernel width m = 4), and
when both forces and torques are applied (M and D, monopole and
dipole terms, kernel width m = 6). The computational cost for the
dipole case is significantly larger than the monopole-only case, pri-
marily because a larger grid size is required for kernel width m = 6,
and because additional FFTs are required in the present implemen-
tation of spreading and interpolation for the dipole terms.53 For
the monopole-only case, the biggest system has L = 18 × 128.8Rh
= 2318.4Rh (H remains the same) and contains 663 552 particles, the
maximum size that fits in the 32 GB of memory in a V100 GPU.
After 169 replicas (346 112 particles), the 12 GB of memory available
in the Titan V GPU is not enough.

Our performance test results clearly show a linear scaling with
the number of particles, allowing computations with on the order of
a million particles in less than a second. This sort of a large num-
ber of particles is infeasible with the direct summation method used
by Sprinkle et al.22 It is difficult to perform direct timing compar-
isons with the linear-scaling, FMM-based multicore, and STKFMM

TABLE III. Simulation parameters for the performance tests when only forces are
applied (monopole-only, M), and when both forces and torques are applied (monopole
and dipole, M and D).

H Lx/y Nz Nx/y mM βM/mM mD βD/mD

M 9.1Rh 128.8Rh 19 150 4 1.87
M and D 9.2Rh 128.8Rh 26 216 6 1.38 6 2.3

code of Wen et al.,28,29 since the performance of this CPU-based
code depends heavily on the type of supercomputer and number
of cores used, and optimization options. Nevertheless, rough tim-
ing comparisons suggest our simple GPU-friendly Stokes solver is
at least an order of magnitude faster for this example on standard
workstations.

B. Lanczos convergence
Brownian Dynamics (BD) simulations require a method to

generate Brownian particle “velocities,” which are Gaussian ran-
dom variables with mean zero and covariance ∼M, i.e., g =M

1
2 W,

where M
1
2 is a square root of the mobility matrix and W is a collec-

tion of independent identically distributed (i.i.d) random numbers
with zero mean and unit standard deviation.54 A Lanczos iterative
algorithm37 can be used to estimate g in the Krylov subspace of
M. Prior work has shown that the number of iterations required
to achieve a certain tolerance is independent of the number of par-
ticles in suspensions of particles near a single wall (BW geometry,
see Fig. 1 in Ref. 35), due to the hydrodynamic screening of the wall,
but grows with the number of particles in the absence of a wall, i.e.,
in a TP environment (see Fig. 1 in Ref. 26 and the inset of Fig. 1 in
Ref. 35).

One could assume that the convergence rate of the Lanczos
algorithm depends on how fast the hydrodynamic interactions decay
with distance. In particular, we expect that the number of iterations
is controlled by the slowest decaying hydrodynamic interactions.
Therefore, for our problem of thin colloidal layers, we focus on the
translation–translation components of the hydrodynamic interac-
tions (no torques) in the xy plane, for which the decay is slowest
relative to the other components. In Fig. 10, we consider a pair
of particles located at the same height z = 1

2 H, same y, and dis-
tance d away from each other in the x direction. We apply a unit
force on one of the particles in either x or y directions and mea-
sure the resulting translational velocity of the other one in the same
direction, i.e., νtt

xx and νtt
yy, which we refer to as parallel, νtt

∥
, and per-

pendicular, νtt
�, mobility components, respectively [see Fig. 10(a)].

We compare our results to the available asymptotic formulas in
the literature for d≫ Rh. For SC geometry, both parallel and per-
pendicular mobilities approach the same asymptote 3H/(32πηd2

)

[see Eq. (51) in Ref. 55]. For BW geometry, the parallel and per-
pendicular mobilities approach the asymptotes 3H2

/(8πηd3
) and

3H4
/(64πηd5

), respectively.27 Also, note that the data are normal-
ized with the corresponding νtt

(d = 0), which is the mobility of a
single particle located at height z = 1

2 H.56

An interesting observation is that νtt
� becomes negative (pres-

ence of backflow) for d/Rh ≳ 4 in the SC geometry [see the inset
of Fig. 10(a)]. To provide a better picture of this phenomena, in
Figs. 10(b) and 10(c), we show representative streamlines of a ghost
particle velocity near a particle that is being dragged along the
x direction. We see the existence of fluid vortices in the SC geom-
etry case. Another important, and counter-intuitive, point is that the
SC geometry shows a slower asymptotic decay rate compared to the
BW geometry1 (d−2 vs d−3). Such a slow decay warrants an exami-
nation of the Lanczos convergence rate in the SC geometry and how
it compares with that in the BW and TP geometries.
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FIG. 10. (a) Two particles are placed at the same height z = 1
2

H, same y, and a distance d apart from each other along the x direction (L = 512Rh,
H = 8Rh, and m = 6). One is pulled with a force in the x or y direction and the induced mobility on the other particle is measured in, respectively, x (parallel component,
νtt
∥ = νtt

xx ) and y (perpendicular component, νtt
� = νtt

yy ) directions. The dashed lines correspond to theoretical asymptotes for d ≫ Rh. [(b) and (c)] Streamlines of a ghost

particle velocity about a particle being pulled along the x direction with a unit force Fx, calculated using the x and y velocity components U(2)
x = νtt

xxFx and U(2)
y = νtt

yxFx.

Figure 11 shows the relative difference ϵn = ∥gn − gn−1∥/∥gn−1∥

for the Lanczos algorithm vs the number of iterations n in the
BW, SC, and TP geometries. For the BW geometry, we observe the
same phenomenon showcased in Ref. 35, where the hydrodynamic
screening of the wall makes the convergence of the Lanczos algo-
rithm essentially independent of the number of particles. The num-
ber of iterations required to achieve a 3-digit accuracy remains less
than 10 for N = 211 to 217 particles. Surprisingly, the SC geome-
try shows a faster convergence rate than the BW one, despite the
slower decay rate of the pair mobilities in this geometry (see Fig. 10).
Perhaps this can be explained by the fact that the slowly decaying
component is not of hydrodynamic origin, but rather comes from
incompressibility; the actual hydrodynamic interactions are expo-
nentially screened in the SC geometry.1 Finally, consistent with prior
work,26 the convergence rate drops significantly (and fails at times)
for large TP systems due to the absence of the wall effects.

It should be noted that the convergence behavior for the SC
geometry depends heavily on the thickness H and the particle height
h, as we explore Fig. 12. We first place 2048 particles near the bot-
tom wall and increase the thickness H between the two walls [see
Fig. 12(a)]. We observe that as H →∞, the SC behavior approaches
that of a BW geometry. We repeat this experiment with the particles

placed at the midplane [see Fig. 12(b)]. This time, as H →∞, the
system behavior approaches that of a TP system, as expected. Fur-
thermore, we find that the convergence worsens as particles start to
overlap the wall; this is a rare occurrence in BD simulations with
steric repulsion.

C. Microrollers
In this section, we use lubrication-corrected BD to study the

dynamics of a dense suspension of colloidal microrollers in the BW
and SC geometries.

1. BW geometry
As discussed earlier, in Ref. 22, some of us described a method

to apply near-field lubrication corrections (without stresslets) to a
blob mobility matrix in the BW geometry, and how to efficiently
use the corrected mobility matrix in the context of BD simulations.
Blob-based descriptions of spherical particles provide efficient and
adequate resolution of far-field hydrodynamic interactions at the
expense of poor resolution for near-field hydrodynamics. Follow-
ing Stokesian dynamics, lubrication corrections are employed to fix
the inaccurate near-field hydrodynamics and effectively capture the
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FIG. 11. Relative error ϵn vs number of iterations n of the Lanczos algorithm for a
suspension of particles with the same configuration as in Fig. 9. Similar to Fig. 9,
the system is replicated in the planar direction to study higher particle counts.
The results for BW and SC geometries are obtained with the parameters given in
Table III but H = 7.5Rh. The TP result is for the same configuration but in triply
periodic mode, where we set the height of the (periodic) domain to H = 130Rh.

true hydrodynamics of nearly touching spheres, or a sphere near a
bottom wall. Specifically, we can construct the lubrication corrected
FCM mobility matrix as

M = (R + ΔR)−1, ΔR =RA
sup −RN

sup, (61)

FIG. 13. A comparison of the experimentally measured (shown as a solid yellow
line with a shaded area representing 95% confidence bounds) and numerically
computed velocity distributions in the direction of collective motion for a sus-
pension of microrollers above a bottom wall. Simulated data are obtained from
lubrication corrected BD in a doubly periodic domain with L = 127Rh, using either
the Rotne–Prager–Blake tensor, where periodicity is captured by directly includ-
ing the 9 nearest periodic images,22 our FCM approach, or our FCM approach
in a 9× larger domain. Inset: A typical configuration for a uniform suspension of
microrollers at planar density ϕ = 0.4 and driving frequency f = 9 Hz, suspended
above a bottom wall. The hematite cube embedded in the particles is overem-
phasized for visual clarity and to show particle orientation. Low/slow particles are
colored magenta while high/fast particles are colored yellow.

where R =M−1 is the resistance matrix computed using our FCM-
based solver, and RA

sup and RN
sup are a superposition of pairwise

resistance tensors for nearly touching surfaces (particle–particle or
particle–wall) computed semi-analytically using the lubrication the-
ory (or using a very refined blob-based method), and numerically by

FIG. 12. Lanczos convergence for a slit channel with increasing gap H, in two scenarios: (a) Particles (N = 2048) are kept near the bottom wall and H increases (which
becomes increasingly similar to the bottom wall geometry). (b) Particles are kept at the middle of the channel and H increases (which becomes increasingly similar to a TP
geometry). Although not shown, above a relative error of ∼10−6, the convergence is not affected by the floating point precision (single or double precision).
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our FCM method,57 respectively. The subscript “sup” signifies super-
position of isolated pair interactions; each block i, j of the resistance
tensors RA

sup and RN
sup (i, j ∈ {1, . . . , N}) accounts for the near-field

hydrodynamic interaction of nearby particles i and j, RN/A
pair, i j , while

the diagonal blocks correspond to the particle–wall interactions,
R N/A

BW, i.
To compute the correction ΔR =RA

sup −RN
sup, we need

expressions for R N/A
pair, i j and R N/A

BW, i. Formulas for R A
pair, i j and

R A
BW, i are given in Appendix A of Ref. 22, while polynomial fits58

for the coefficients of R N
pair, i j for FCM can be found in Ref. 59. To

compute R N
BW, i, we simply use our FCM approach to generate a set

a data for each coefficient vs height above the wall, taking care to use
a large enough L = Lx/y so that the periodic artifacts do not pollute
the data, and linearly interpolate this data as needed.

To interrogate the effectiveness of using lubrication correc-
tions with our FCM method, we will study the uniform suspension
of rotating particles above a bottom wall considered in Sec. IV of
Ref. 22. The “microrollers” are magnetic since they each have a cube
of hematite embedded near their surface that exerts a torque when
an external, rotating, magnetic field is applied to the whole suspen-
sion. The magnetic torque is strong enough that up to a certain
frequency (∼10 Hz) the particles rotate with the same frequency
of the applied field. We measure the particle velocity distribu-
tion P(Ux) in the positive x direction in response to an applied

magnetic field rotating in the yz plane with a frequency of 9 Hz,
for a uniform suspension of microrollers with in plane packing
fraction ϕ = 0.4. Figure 13 shows both the experimental measure-
ments of P(Ux) and the numerical results using the lubrication
corrected RPY mobility given in Ref. 22, along with results from a
new simulation using our lubrication corrected FCM method. The
new FCM method agrees reasonably well with both the experimen-
tally measured velocity distribution as well as the old RPY results.
However, there is a clear difference that stems from the fact that
lubrication corrections are only approximate and have uncontrolled
precision; perhaps including stresslets as well10,15,40 would make the
match better. Although it is tempting to compare to experimental
data and choose one approximation over the other, it should be
noted that some of the parameters in Ref. 22 were chosen to match
experimental data, while here we reuse the same parameters as in
Ref. 22 without re-estimating them.

2. SC geometry
In an SC geometry, the pair interactions remain the same, and

one only needs to make modifications for the particle–wall inter-
actions (compared to the BW geometry). In other words, we sim-
ply replace the near-field BW correction tensors ΔRBW, i = R A

BW, i
−R N

BW, i with SC correction tensors, assuming grid invariance,

ΔRSC, i = R A
SC, i(h) −R N

SC, i(h) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

ΔXtt
(h) ẑẑ T

+ ΔY tt
(h) (I − ẑẑ T

) −ΔY tr
(h) ẑ×

ΔY tr
(h) ẑ× ΔXrr

(h) ẑẑ T
+ ΔYrr

(h) (I − ẑẑ T
)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (62)

where h is the height of the particle’s center above the bottom wall,
ẑ is the unit normal vector of the bottom wall, and ẑ× is the matrix
that takes the cross-product with ẑ. However, the available analyt-
ical formulas for the coefficients of R A

SC, i typically take the form
of unwieldy and slowly convergent series,17 so we instead calcu-
late the coefficients using a well-resolved multiblob representation
of a sphere in a channel geometry. Recalling that only ΔRSC, i (but
not R N/A

SC, i individually) is needed, all calculations should be done
with the same unit cell in the xy plane; this ensures that the results
will rapidly converge in the limit as the periodic domain size Lx/y
= L→∞. Note that the periodic domain size in all of these pre-
calculations was taken to be L = 32Rh as this was determined to be
sufficient to avoid any noticeable periodic artifacts.

Figure 14 shows each component of ΔRSC, i in (62) for a par-
ticle in an SC geometry with channel height H = 6Rh (notation for
the coefficients follows Ref. 60). The components of ΔRSC, i are
computed using an increasingly resolved multiblob17 representation
of the sphere and extrapolated (Richardson) to infinite resolution.
Figure 14 also shows each component of the single wall lubrication
corrections to the nearest wall ΔRBW, i, where R A

BW, i is computed

with a very resolved 2562 multiblob representation of a sphere.22

Note that it is also possible to add the lubrication corrections from
both walls, but we have found this to be less accurate in thin channels
because the corrections are doubled in the channel’s center. Com-
paring the behavior of each component in ΔRBW, i with the behavior
of ΔRSC, i shows that, at least for this representative problem with
a channel width H = 6Rh, superposing single wall corrections is a
very reasonable approximation to the full slit channel corrections.
Still, we opt to use the channel corrections in our simulations to
emphasize that this approach can be adopted even for very thin
channels where superposing single wall corrections may provide
a worse approximation. Numerically, we find that basing lubrica-
tion corrections on the nearest wall works surprisingly well even for
channels as thin as H = 3Rh.

3. Effects of confinement on suspensions
of microrollers

A suspension of microrollers above a BW will self-separate
into a layer of slow-moving particles that remain close to the wall,
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FIG. 14. For an SC geometry with height H = 6Rh, each panel shows one of the five components in ΔRSC, i [see (62)] computed using our FCM-based solver and
increasingly resolved rigid multiblob simulations.17 Richardson extrapolation is used to approximate more accurate values for ΔRSC, i than we can presently compute with
the multiblob method because large grid sizes are required. Each panel also shows components of the single wall corrections ΔRBW, i for the nearest wall, which provides
a very reasonable approximation to the corrections in the SC geometry. Note that extrapolation is necessary (and not as accurate) for the components involving rotation
since the rotational hydrodynamic radii of low-resolution multiblob spheres are different from their translational hydrodynamic radii,17 and computations with 2562 blobs and
L = 32Rh are infeasible due to limited GPU memory.

mainly due to gravity, and a fast layer of particles that are lifted
above the slow layer, against gravity. These results are detailed
in Ref. 22 and reconfirmed in this section. Our spectral FCM
approach now enables us to investigate the effect of further confine-
ment on the velocity of a microroller suspension. In this section,
we will use the same simulation parameters as those for the BW
geometry considered in Sec. V C, but change the geometry to an
SC with height H = 6Rh. The H = 6Rh channel width was cho-
sen based on the 98th percentile of the particle height distribu-
tion obtained in the BW geometry (see the inset in Fig. 13) so
that the top wall only provides a minor steric constraint on the
suspension.

Figure 15 compares the velocity distributions [P(Ux)] of the
driven particles in a suspension confined by a single BW, or an
SC with height H = 6Rh. The velocity distributions in each case
are also broken up into sub-distributions consisting of particles

whose height above the BW is above/below a certain threshold
(specifically, h ≶ 2Rh). This shows that the faster particles in the
suspension (those which have the largest positive Ux) are also the
highest in the suspension. The inset of Fig. 15 indicates that the
particle height distributions in the BW and SC (H = 6Rh) geome-
tries are fairly similar, while the main figure shows large differences
in the velocity distributions for these two geometries. Although
both distributions are bimodal, there are no really fast particles
in the SC case. Coincidentally, the “fast” layer is at a distance of
about 3Rh from the bottom wall. If it were not for the “slow” layer
of particles breaking the vertical symmetry, particles at h = 3Rh
would not move when spinning. We can thus conclude that this
significant slowing of the suspension velocity in the SC geometry
compared with the BW geometry is due to the presence of a top wall,
which changes the character of the flow generated by driving the
suspension.
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FIG. 15. Distributions of particle height (inset) and velocity (main figure) for a micro-
roller suspension above a single wall (BW, gold line with circular markers), and a
slit channel with width H = 6Rh (SC, teal line with square markers). Particle veloc-
ity distributions are shown for each channel geometry where each distribution is
also broken into sub-distributions for low (close to the bottom wall, h < 2Rh) and
high (h > 2Rh) particles. These sub-distributions show that regardless of domain
geometry the “high” particles make up the mode of “fast” particles in the suspen-
sion (where “fast” is to be interpenetrated as having a large, positive Ux ). Inset:
dimensionless particle height (h/Rh) distributions are shown for each channel
geometry. The dashed line demarcates the maximum possible particle height in
the SC geometry.

VI. CONCLUSIONS
In this paper, we have developed a variant of the force coupling

method (FCM) for computing hydrodynamic interactions among
blobs/particles suited for doubly periodic geometries, including the
ones that have an open aperiodic direction. We employed a more
compact non-Gaussian kernel to reduce the grid size required to
resolve the particles. Our novel spectral Stokes solver uses FFTs in
the two periodic directions and Chebyshev transforms in the aperi-
odic direction and is suited for efficient implementation on GPUs
using a single 3D FFT for each Fourier–Chebyshev transformation.
We used our method to show that a dense monolayer of colloidal
microrollers splits into two layers even in a slit channel, but moves
substantially slower.

The key ideas used in our Stokes solver, namely, the use of
the Dirichlet-to-Neumann map to obtain boundary conditions in
the aperiodic direction, as well as the use of correction solves to
enforce boundary conditions, can be used to generalize the solver
to other boundary conditions in the aperiodic direction, such as
partial slip (e.g., superhydrophobic surfaces) or free slip bound-
aries (e.g., a fluid–fluid interface), including cases when there are
particles on both sides of the boundary. However, it is important
to point out that the method relies in a key way on the double
periodicity in two directions to obtain a system of uncoupled one-
dimensional boundary value problems and is therefore tailored to
doubly periodic geometries.

It is possible to extend our work to account for the contribution
of stresslets, as already implemented in the traditional FCM method;
see Eqs. (7) and (11) in Ref. 7. While we have not done so, there is
no difference as far as our method or any FCM method is concerned

between torque and stresslet; they are spread with the same kernel,
and both are spread and interpolated using derivatives of the ker-
nel. The real challenge is how to efficiently solve for the stresslets;
see the work of Fiore and Swan15 for some ideas toward effec-
tive preconditioning. Additionally, one might include fluctuations
(Brownian motion) with stresslets as described in Appendix B of
Ref. 32, as well as in Refs. 40 and 61.

Two key challenges for future work are to combine the force
coupling method with Ewald splitting and to devise a method to
generate stochastic displacements for BD without iterations. This
would allow us to decouple the blob hydrodynamic radius from
the grid size and make stochastic simulations of comparable cost
to deterministic simulations. Both of these challenges have been
tackled for the RPY kernel in the positively split Ewald method26

for triply periodic domains. Both challenges have also partially
been addressed in a low-order immersed boundary approach33,62

including for slit channel geometries, but the accuracy is dif-
ficult to control and the Ewald splitting is approximated by a
particle–particle–particle–mesh approach.

Considerable progress has been made on handling the first
challenge due to its importance in boundary integral methods
for Stokes flow. Spectral Ewald Stokes solvers for the singular
Stokeslet and Rotlet have been developed extensively by the group
of Tornberg,30,63 including recent work that unifies arbitrary peri-
odicities in different directions.31 One can directly apply these
methods to the bottom wall geometry we studied here using a
method of images, but the finite size of the particles and the poten-
tial overlap of the particles with each other and the wall need to
be accounted for either using the RPY kernel (as in recent fast
multipole methods29) or an FCM-like approach. To our knowl-
edge, an Ewald splitting for FCM has not yet been developed even
for triply periodic domains. It seems quite plausible that by com-
bining ideas from this paper (and our work on Poisson solvers13)
with extensive work in the field of FCM and spectral Ewald meth-
ods, in the future the community can develop an Ewald splitting
method for finite-size blobs capable of handling all doubly periodic
geometries.

The second challenge, generating the action of the square root
of the mobility explicitly without costly iterations, has hardly been
addressed for non-triply periodic domains. We have been able to
achieve this for doubly periodic unconfined geometries using the
approach developed in this work; however, it required switching
to a Galerkin formulation of the boundary value problems in the
unbounded direction. This not only leads to dense linear systems,
instead of the pentadiagonal ones in the method presented here, but
it also couples all three velocities and pressure in one linear solve for
each planar Fourier mode. This makes the approach less suited to
memory-limited GPUs and more costly if sufficient memory is avail-
able. Furthermore, accounting for the wall(s) remains a nontrivial
challenge for future work.
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APPENDIX A: SLIT CHANNEL GEOMETRY
WITH SLIP VELOCITY

For the SC geometry, for increased generality and because of
its relevance to microfluidics, we show how to impose partial slip
boundary conditions at z = 0 and z = H,

u∣z=0 − uwall
0 = ℓ0[

∂u(x, y, 0)

∂z

∂v(x, y, 0)

∂z
0]
⊺

, (A1a)

u∣z=H − uwall
H = −ℓH[

∂u(x, y, H)

∂z

∂v(x, y, H)

∂z
0]
⊺

. (A1b)

Here, uwall
0/H = [u

wall
0/H v

wall
0/H 0]

⊺ are the wall velocities, and ℓ0/H
are the slip lengths, with ℓ = 0 denoting a no-slip wall.

For simplicity, we write the equations explicitly only for u, with
identical equations for v with the swap x↔ y. Note that the DP
solver remains the same as that of the single wall geometry, noting
that particle kernels have images in both walls. It is the correction
solve that takes care of the boundary conditions.

1. Correction solve
We have u = uDP + ucorr, which upon substitution into (A1),

and some rearrangement, yields

ucorr∣z=0 − ℓ0[
∂ucorr(x, y, 0)

∂z
∂vcorr(x, y, 0)

∂z
0]
⊺

= [u0(x, y) v0(x, y) w0(x, y)]
⊺

, (A2a)

ucorr∣z=H + ℓH[
∂ucorr(x, y, H)

∂z
∂vcorr(x, y, H)

∂z
0]
⊺

= [uH(x, y) vH(x, y) wH(x, y)]
⊺

, (A2b)

where

u0(x, y) = uwall
0 − uDP(x, y, 0) + ℓ0

∂uDP(x, y, 0)
∂z

, (A3a)

w0(x, y) = −wDP(x, y, 0), (A3b)

uH(x, y) = uwall
H − uDP(x, y, H) − ℓH

∂uDP(x, y, H)
∂z

, (A3c)

wH(x, y) = −wDP(x, y, H). (A3d)

Following a similar method as the one described in Sec. III B,
one can find the general solutions to p̂corr and ûcorr, the pressure and
velocity in Fourier space, as

p̂corr(k, z) = C0e−kz
+D0ekz , (A4)

ûcorr(k, z) = −
C0ikx

2ηk
ze−kz

+
D0ikx

2ηk
zekz
+ Cxe−kz

+Dxekz , (A5)

ŵcorr(k, z) =
C0

2η
ze−kz

+
D0

2η
zekz
+ Cze−kz

+Dzekz. (A6)

To find the constants, we start by writing the boundary
conditions (A2) in Fourier space

ûcorr(k, 0) − ℓ0
∂ûcorr(k, 0)

∂z
= û0(k), (A7a)

ŵcorr(k, 0) = ŵ0(k), (A7b)

ûcorr(k, H) + ℓH
∂ûcorr(k, H)

∂z
= ûH(k), (A7c)

ŵcorr(k, H) = ŵH(k). (A7d)

Substituting (A5) and (A6) into (A7) results in the following
equations for the unknown constants:

(
ikxℓ0

2ηk
)C0 − (

ikxℓ0

2ηk
)D0 + (1 + kℓ0)Cx

+ (1 − kℓ0)Dx = û0(k), (A8a)

Cz +Dz = ŵ0(k), (A8b)

ikxHe−kH

2ηk
(kℓH −

ℓH

H
− 1)C0 +

ikxHekH

2ηk
(kℓH +

ℓH

H
+ 1)D0

+ e−kH
(1 − kℓH)Cx + ekH

(1 + kℓH)Dx = ûH(k), (A8c)

He−kH

2η
C0 +

HekH

2η
D0 + e−kHCz + ekHDz = ŵH(k). (A8d)

Furthermore, the continuity equation in Fourier space (38) can
be written at z = 0, H,
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ikxûcorr(k, 0/H) + iky v̂corr(k, 0/H) +
∂ŵcorr(k, 0/H)

∂z
= 0. (A9)

Inserting the general solutions (A5) and (A6) into the above
equations yields two more equations for the unknown coefficients

C0

2η
+

D0

2η
+ ikxCx + ikxDx + ikyCy + ikyDy − kCz + kDz = 0, (A10a)

e−kH

2η
C0 +

ekH

2η
D0 + ikxe−kHCx + ikxekHDx + ikye−kHCy

+ ikyekHDy − ke−kHCz + kekHDz = 0. (A10b)

Now we have a system of eight equations given by (A8) (with
the corresponding equations for v) and (A10), which can be solved
to find the eight unknown constants C0, D0, Cx/y/z , Dx/y/z for each
k = [kx ky]

⊺

≠ 0.

2. Zero mode (k = 0)
The zero mode k = 0 solutions to the velocity component nor-

mal to the walls, ŵ(0, z), and the pressure, p̂(0, z), remain the same
as those of the single wall geometry, given by (47) and (50). How-
ever, the k = 0 mode of the tangential velocity components will be
different. Fourier transform of the slip boundary conditions (A1) is

û(k, 0) − ûwall
0 (k) = ℓ0[

∂û (k, 0)

∂z

∂ v̂ (k, 0)

∂z
0]
⊺

, (A11a)

û(k, H) − ûwall
H (k) = −ℓH[

∂û (k, H)

∂z

∂ v̂ (k, H)

∂z
0]
⊺

. (A11b)

Therefore, similar to the single-wall case [cf. (51) and (52)], one
can find û(0, z) (and analogously v̂(0, z)) via solving the following
BVPs:

∂2û(0, z)
∂z2 = −

f̂ (0, z)
η

, û(0, 0) − ℓ0
∂û(0, 0)

∂z
= ûwall

0 (0),

û(0, H) + ℓH
∂û(0, H)

∂z
= ûwall

H (0).
(A12)

APPENDIX B: TRANSLATION–TRANSLATION
PAIR COUPLING

In this appendix, we numerically compute and investigate the
invariance under rotation and translation of the pair translational
mobility, Mtt , for the ES kernel in a large triply periodic domain.
We will examine our numerical approximation to Mtt as a func-
tion of d = ∥d∥ = ∥d(1) − d(2)∥, where d(1) and d(2) are the positions
of the two particles. If the kernel is rotationally invariant [which
our tensor product ES kernel (53) is not], then Mtt would have the
invariant form

Mtt
(d) = f (d)I + g(d)

d ⊗ d
d2 (B1)

for some functions f (d) and g(d). Lomholt and Maxey7 derived
analytical forms for free space f (d) and g(d) when particles

FIG. 16. (a) Numerically calculated, normalized, mobility functions (8πηd) f(d) and (8πηd) g(d), for two spheres in a large triply-periodic domain with ES kernel, vs
the distance d between the two spheres, along with reference FCM curves given by (B2) for the continuum model in free space with Gaussian envelopes. (b) Normalized
difference between the numerical and analytical values of f(d) and g(d) (i.e., (8πηRh)[ f(d) − f FCM(d)] and (8πηRh)[g(d) − gFCM(d)], respectively) vs d.
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are represented by Gaussian force envelopes (in the absence of
discretization artifacts),

f (d) =
1

8πηd
((1 + 2

R2
h

πd2 ) erf(
d
√

π
2Rh
)

− 2
Rh

πd
exp(−

πd2

4R2
h
)), (B2a)

g(d) =
1

8πηd
((1 − 6

R2
h

πd2 ) erf(
d
√

π
2Rh
)

+ 6
Rh

πd
exp(−

πd2

4R2
h
)). (B2b)

The invariant form (B1) does not strictly apply, in practice, for
our FCM method for several reasons. The first is that the tensor
product kernel we use is not rotationally invariant as a Gaussian ker-
nel is. The second is that rotational invariance is broken for a finite
system such as a periodic box. Finally, there are discretization arti-
facts due to the finite grid resolution in the Stokes solver, especially
for the small kernel widths like m = 4. Here we numerically demon-
strate that our method produces pair-mobility that matches (B2) to
at least two digits.

The numerical domain is a cubic box of side length L = 200 and
uniform grid spacing h = 1. We consider particles represented by the
optimal m = 6 monopole kernel with Rh = 1.55 or the optimal m = 4
monopole kernel with Rh = 1.205 (see Table II). The two particles
always use the same kernel types. We generate 104 random parti-
cle pair configurations at a distance d ∈ [0, 25] from each other. For
each pair, we compute the pair parallel and perpendicular mobil-
ities ν∥ and ν� with respect to the direction p. According to (B1),
we have

ν∥ ≈ f (d; L) + g(d), (B3)

ν� ≈ f (d; L), (B4)

where f (d; L) depends on L due to the finite size of the triply
periodic box. Following Hasimoto’s corrections for the self-mobility
in triply periodic domains50 [see (55)], we correct the numerically
calculated f (d; L) for d≪ L by

f (d) ≈ f (d; L) +
1

6πηRh
(2.84

Rh

L
). (B5)

In Fig. 16, we compare the corrected f (d) and g(d) for the ES
kernel to the free space f (d) and g(d) for Gaussian force envelopes
given by (B2). We see a good match for both m = 4 and m = 6
monopole ES kernels [see Fig. 16(a)]. Figure 16(b) shows the nor-
malized difference between the numerically calculated f (d) and
g(d) by the ES kernel and the traditional FCM mobility functions
(B2). We see that the data clusters around a curve that is system-
atically different from (B2), but the difference is on the order of a
percent or less. Also, the scatter of f (d) and g(d) due to imperfect
translational and rotational invariance are well controlled within two
digits. Note that the increased error at high d/Rh is due to periodic
boundary conditions artifacts.
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