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Quasi-2D Coulomb systems are of fundamental importance and have attracted much attention in 
many areas nowadays. Their reduced symmetry gives rise to interesting collective behaviors, but 
also brings great challenges for particle-based simulations. Here, we propose a novel algorithm 
framework to address the O(𝑁2) simulation complexity associated with the long-range nature of 
Coulomb interactions. First, we introduce an efficient Sum-of-Exponentials (SOE) approximation 
for the long-range kernel associated with Ewald splitting, achieving uniform convergence in terms 
of inter-particle distance, which reduces the complexity to O(𝑁7∕5). We then introduce a random 
batch sampling method in the periodic dimensions, the stochastic approximation is proven to be 
both unbiased and with reduced variance via a tailored importance sampling strategy, further 
reducing the computational cost to O(𝑁). The performance of our algorithm is demonstrated 
via various numerical examples. Notably, it achieves a speedup of 2 ∼ 3 orders of magnitude 
comparing with Ewald2D method, enabling molecular dynamics (MD) simulations with up to 106
particles on a single core. The present approach is therefore well-suited for large-scale particle

based simulations of Coulomb systems under cofinement, making it possible to investigate the 
role of Coulomb interaction in many practical situations.

1. Introduction

In various fields such as electromagnetics, fluid dynamics, computational soft matter and materials science [1--3], it is of great 
importance to evaluate lattice kernel summations in the form of

𝜙(𝒙) =
∑
𝒎

𝑁∑
𝑗=1 

𝜌𝑗𝐾(𝒙− 𝒚𝑗 +𝒎 ◦𝑳) , (1)

where 𝒙,𝒚𝑗 ∈ℝ𝑑 are 𝑑-dimensional vectors in a rectangular box Ω with 𝑳 the vector of its edge lengths, 𝜌𝑗 refers to the density or 
weight, 𝒎 ∈ℤ𝑑′ ⊗ {0}𝑑−𝑑′ exerts periodicity in the first 𝑑′ directions (with 𝑑′ ≤ 𝑑), ``◦'' represents the Hadamard product, and 𝐾(𝒙)
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is the kernel function whose form depends on the interested physical problem. If 𝑑′ = 𝑑, the system is called fully-periodic, 𝑑′ = 0, 
it is in a free-space, otherwise it is called partially-periodic. In this work, we focus on the doubly-periodic case (where 𝑑 = 3 and 
𝑑′ = 2), characterizing a cofined system with nanometer/angstrom length scale in one direction; bulk and periodic in the other two 
directions. In literature, this type of systems are also referred as quasi-2D systems, which have caught much attention in studies of 
magnetic and liquid crystal films, super-capacitors, crystal phase transitions, dusty plasmas, ion channels, superconductive materials 
and quantum devices [4--9,3].

The reduced symmetry of quasi-2D systems gives rise to new phenomena, but also brings formidable challenges in both theory and 
computation. The first challenge comes from the involved long-range interaction kernels, including but not limited to Coulomb and 
dipolar kernels in electrostatics, Oseen and Rotne-Prager-Yamakawa kernels in hydrodynamics and the static exchange-correlation 
kernels in density functional theory calculations. For fully-periodic or free-space systems, O(𝑁) fast algorithms have been developed; 
but the field is still under developing for partially-periodic systems. The anisotropy of such systems poses extra challenges for simula

tions: 1) the periodic and non-periodic directions need to be handled separately due to their different boundary conditions and length 
scales; 2) the convergence properties of the lattice kernel summation Eq. (1) requires careful consideration, which largely depend 
on the well-posedness of the underlying PDEs. Another challenge comes from practical applications. To accurately determine the 
phase diagram of a many-body system may require thousands of simulation runs under different conditions [10], each with billions 
of time steps to sample ensemble averages. Moreover, to eliminate the finite size effect, millions of free particles need to be simulated. 
Such large-scale simulations are especially required for quasi-2D systems, so as to accommodate its strong anisotropy, and resolving 
possible boundary layers forming near the cofinement surfaces [8]. The cumulative impact of these considerations poses significant 
challenges for numerical simulations for quasi-2D systems.

To address these issues associated with the particle-based simulation of quasi-2D systems, a variety of numerical methods have been 
developed. Most of them fall into two categories: (1) Fourier spectral methods [11--14], where particles are first smeared onto grids, 
and subsequently the underlying PDE is solved in Fourier domain where fast Fourier transform (FFT) can be used for acceleration; 
(2) adaptive tree-based methods, where fast multipole method (FMM) [15] or tree code [16] originally proposed for free-space 
systems can be extended to quasi-2D systems by careful extension to match the partially-periodic boundary conditions [17,18]. 
Alternative methods have also been proposed, such as the Lekner summation-based MMM2D method [19], multilevel summation 
methods [20,21], and correction-based approaches such as Ewald3DC [22] and EwaldELC [23], which first solve a fully-periodic 
system and then add the partially-periodic correction terms. By combining with either FFT or FMM, these methods achieve O(𝑁 log𝑁)
or even O(𝑁) complexity.

However, the issue of large-scale simulation of quasi-2D systems is still far from settled. A few challenges remain. First, FFT-based 
methods need extra techniques to properly handle the non-periodic direction, such as truncation [24], regularization [12], or periodic 
extension [11], which may lead to algebraic convergence or require extra zero-padding to guarantee accuracy. Recent advancements 
by Shamshirgar et al. [25], combining spectral solvers with kernel truncation methods (TKM) [26], have reduced the zero-padding 
factor from 6 to 2 [11], which still requires doubling the number of grids with zero-padding. Second, the periodization of FMM needs 
to encompass more nea-field contributions from surrounding cells [17,27]. The recently proposed 2D-periodic FMM [28] may offer 
a promising avenue; however, it has not yet been extended to partially-periodic problems. Finally, it is worth noting that most of the 
aforementioned issues will become more serious when 𝐿𝑧 ≪min{𝐿𝑥,𝐿𝑦}, in which case the Ewald series summation will converge 
much slower [23], and the zero-padding issue of FFT-based methods also becomes worse [14].

In this work, we introduce a novel algorithm for particle-based simulations of quasi-2D systems with long-range interactions 
(typically, the 1∕𝑟 Coulomb kernel). Our approach connects Ewald splitting with a sum-of-exponentials (SOE) approximation, which 
ensures uniform convergence along the whole non-periodic dimension. We further incorporate importance sampling in Fourier space 
over the periodic dimensions, achieving an overall O(𝑁) simulation complexity. The algorithm has distinct features over the other 
existing approaches:

1. Our approach provides a well-defined computational model for both discrete free-ions and continuous surface charge densities, 
and is consistent under both NVT and NPT ensembles.

2. The simulation algorithm has linear complexity with small prefactor, and it does not depend on either FFT or FMM for its 
asymptotic complexity.

3. Instead of modifying FFT and FMM-based methods, which are originally proposed for periodic/free-space systems, our scheme 
is tailored for partially-periodic systems, it perfectly handles the anisotropy of such systems without any loss of efficiency.

4. Our method is mesh free, and can be flexibly extended to other partially-periodic lattice kernel summations in arbitrary dimen

sions, thanks to the SOE approximation and random batch sampling method.

Our approach builds upon the Ewald2D formula and incorporates an SOE approximation for the kernel function in the non-periodic 
dimension. By utilizing the SOE form, we are able to reformulate Ewald2D into a recursive summation, reducing the computational 
complexity from O(𝑁2) to O(𝑁7∕5). We also address the issue of catastrophic error cancellation associated with the original Ewald2D 
method. Additionally, we introduce a random batch importance sampling technique in Fourier space to accelerate the computation 
in the periodic dimensions, without the need for costly direct summation or FFT. The resulting method, named RBSE2D, maintains 
numerical stability and achieves optimal O(𝑁) complexity in both CPU and memory consumptions. Rigorous error estimates and 
complexity analysis are provided, further validated by numerical tests. In particular, numerical results demonstrate that RBSE2D

based MD simulations can accurately reproduce the spatiotemporal properties of quasi-2D Coulomb systems, along with a significant 
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improvement in computational efficiency with a speedup of approximately 2 − 3 orders of magnitude compared to the standard 
Ewald2D method, allowing large-scale simulations of quasi-2D systems.

We refer to the RBSE2D as a framework for partially-periodic summation problems with arbitrary non-oscillatory kernels since 
the method is highly kernel/dimension independent. The details of this framework, however, are showcased by the specific Coulomb 
kernel under the quasi-2D setup, which is both physically important and concise to be mathematically clarfied. The remaining sections 
of the paper are organized as follows. Section 2 introduces the quasi-2D electrostatic model and revisits the Ewald2D summation 
formula for quasi-2D Coulomb systems. Section 3 introduces the SOE approximation for the Ewald2D summation in the non-periodic 
dimension. Section 4 introduces the random batch sampling method for further accelerating the computations in periodic dimensions. 
Finally, to validate the accuracy and efficiency of our proposed method, numerical results are presented in Section 5. Concluding 
remarks are provided in Section 6.

2. Ewald summation for quasi-2D Coulomb systems

In this section, we introduce the physical model and mathematical notations for quasi-2D Coulomb systems, and provide a concise 
overview of the Ewald2D lattice summation formula, along with the extension to cofinement with charged interfaces. While some of 
the results in this section are novel contributions, it is important to note that the majority of concepts introduced in Sections 2.1-2.2

have been well-established in the literature.

2.1. Quasi-2D Coulomb systems

Quasi-2D Coulomb systems are usually modelled via the so-called doubly-periodic boundary conditions (DPBCs), i.e., periodic in 
𝑥𝑦 directions to mimic the environment of bulk, and non-periodic in the 𝑧 direction, indicating cofined particles in 𝑧 at nano-/micro 
scales either by soft or hard potential constraints [8]. In literature, this type of model is often referred as the ``slab geometry'' [22] or 
the ``slit channel'' geometry [14].

Consider a simulation domain Ω= [0,𝐿𝑥] × [0,𝐿𝑦] × [0,𝐿𝑧] ⊂ℝ3, which comprises 𝑁 particles with positions 𝒓𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) ∈ Ω
and charges 𝑞𝑖, 𝑖 = 1,⋯ ,𝑁 . The electrostatic potential 𝜙(𝒓) for such systems, assuming uniform background dielectric media, is 
governed by the following Poisson’s equation with DPBCs:

−Δ𝜙(𝒓) = 4𝜋𝑔(𝒓) , with 𝑔(𝒓) =
∑
𝒎

𝑁∑
𝑗=1 

𝑞𝑗𝛿(𝒓− 𝒓𝑗 +M) , (2)

where 𝒎 = (𝑚𝑥,𝑚𝑦) ∈ℤ2, and M ∶= (𝑚𝑥𝐿𝑥,𝑚𝑦𝐿𝑦,0). The solution to Eq. (2) is doubly-periodic 𝜙(𝒓) = 𝜙(𝒓+M) and unique up to a 
linear function in 𝑧. The uniqueness will be satified by incorporating a suitable boundary condition as 𝑧→ ±∞.

In many practical situations, the potential is dfined via the following Coulomb summation formulation,

𝜙(𝒓) =
∑
𝒎

𝑁∑
𝑗=1 

𝑞𝑗|𝒓− 𝒓𝑗 +M| . (3)

It is important to note that the potential becomes singular when 𝒓 = 𝒓𝑗 and 𝒎 = 𝟎, with the singularity arising from the Dirac delta 
source. It is important to note that Eq. (3) is not well dfined without specifying the shape of summation region [29,30] and the 
total charge neutrality condition. We construct copies Ω(𝒎) of the simulation domain by Ω(𝒎) = {𝒓|𝒓 −M ∈ Ω}. One has Ω(𝟎) ≡Ω
and a copied domain Ω(𝒎) contains 𝑁 charges at 𝒓𝑗 +M. Next, we dfine a summation shape S ⊂ℝ2 which contains the origin. We 
consider a lattice Λ(S,𝑅) = {Ω(𝒎)|𝒎∕𝑅 ∈ S} with 𝑅 ∈ℝ be a truncation parameter. Given these notations, Theorem 2.1 clarfies the 
necessary conditions to guarantee absolute convergence of the series.

Theorem 2.1. The summation in Eq. (3) truncated within region Λ(S,𝑅) is absolutely convergent as 𝑅→∞ if (1) the shape S is symmetric 
around the origin (meaning that if 𝒎∕𝑅 ∈ S, then −𝒎∕𝑅 ∈ S); and (2) the system within the central box is charge neutral, i.e., 

∑𝑁
𝑗=1 𝑞𝑗 = 0.

Proof. By the Taylor expansion, one has for large |𝒎|
1 |𝒓+M| = 1 |M| − 𝒓 ⋅M|M|3 +O

(
1 |M|3

)
. (4)

In the right-hand side of Eq. (4), the second term is odd with respect to 𝒎 and thus sums to zero due to the symmetry of S. The last 
O(|M|−3) term is absolutely convergent as 𝑅→∞. Therefore, it is sufficient to analyze the convergence behavior of the expression:

𝐽 = lim 
𝑅→∞

∑
𝒎∕𝑅∈S

1 |M| 𝑁∑
𝑗=1 

𝑞𝑗 . (5)

Eq. (5) can be viewed as a Riemann sum multiplied by the total net charges. If the charge neutrality condition is satified, i.e., ∑𝑁
𝑗=1 𝑞𝑗 = 0, then 𝐽 vanishes and the series summation of 𝜙 in Eq. (3) is absolutely convergent. If the charge neutrality condition is 

violated, the Riemann sum can be approximated as an integral, 𝐽 ∼ 2𝜋(𝐿𝑥𝐿𝑦)−1𝑅
∑𝑁

𝑗=1 𝑞𝑗 , which diverges as 𝑅→∞. This implies 
that the total charge neutrality condition is a necessary requirement for the existence of 𝜙(𝒓) in Eq. (3). □
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In practice, a common choice in Ewald 3D/2D summation approaches is by choosing the spherical/circular shape of summation 
region centered at the origin with unit radius; i.e., the sum is taken over |𝒎| = 0,1,2… ,𝑅 in ascending order, where 𝑅 is the 
truncation parameter. As long as Eq. (3) is well dfined, Proposition 2.2 establishes a precise relationship between Eq. (3) and the 
solution to Poisson’s equation (2) with a properly chosen boundary condition as 𝑧→∞.

Proposition 2.2. If the series summation of 𝜙(𝒓) in Eq. (3) satifies both conditions stated in Theorem 2.1, then it is a unique solution to 
Poisson’s equation (2) given the fa-field boundary condition

lim 
𝑧→±∞

𝜙(𝒓) = ± 2𝜋
𝐿𝑥𝐿𝑦

𝑁∑
𝑗=1 

𝑞𝑗𝑧𝑗 . (6)

Proof. Let 𝝆 = (𝑥, 𝑦) and 𝒌 = (𝑘𝑥, 𝑘𝑦) denote the periodic dimensions of position and Fourier frequency, respectively, where 𝝆 ∈ R2

and 𝒌 ∈K2 with

R2 ∶= {𝝆 ∈ [0,𝐿𝑥] × [0,𝐿𝑦]} , and K2 ∶=
{
𝒌 ∈ 2𝜋

𝐿𝑥

ℤ × 2𝜋
𝐿𝑦

ℤ
}

. (7)

The Poisson’s summation formula (see Appendix A) indicates

∑
𝒎

𝑁∑
𝑗=1 

𝑞𝑗|𝒓− 𝒓𝑗 +M| = 𝑁∑
𝑗=1 

𝑞𝑗

[
2𝜋

𝐿𝑥𝐿𝑦

∑
𝒌≠𝟎

𝑒
−𝑘

|||𝑧−𝑧𝑗
|||

𝑘 
𝑒−i𝒌⋅(𝝆−𝝆𝒋 ) + 𝜙𝟎(𝑧− 𝑧𝑗 )

]
, (8)

where 𝑘 = |𝒌| and

𝜙𝟎(𝑧− 𝑧𝑗 ) =
2𝜋

𝐿𝑥𝐿𝑦

∞ 

∫
0 

𝜌 √
𝜌2 + |𝑧− 𝑧𝑗 |2 𝑑𝜌 (9)

represents the 𝒌 = 𝟎 term. Note that Eq. (9) is equivalent to a uniformly charged ifinite plane in the real space. As 𝑧→∞, all 𝒌 ≠ 𝟎
modes vanish, so that

lim 
𝑧→±∞

𝜙(𝒓) = lim 
𝑧→±∞

𝑁∑
𝑗=1 

𝑞𝑗𝜙𝟎(𝑧− 𝑧𝑗 ) . (10)

One can then integrate out Eq. (9) and arrives at

lim 
𝑧→±∞

𝜙(𝒓) = − lim 
𝑧→±∞

2𝜋
𝐿𝑥𝐿𝑦

𝑁∑
𝑗=1 

𝑞𝑗
|||𝑧− 𝑧𝑗

||| . (11)

Finally, the charge neutrality condition results in Eq. (6).

Eq. (6) indicates that lim 
𝑧→±∞

𝜙(𝒓) is a finite constant, and thus can be regarded as a properly chosen Dirichlet-type boundary 
condition at 𝑧 → ±∞ [11]. Next, we study the uniqueness of the solution of Poisson’s equation under DPBCs and Eq. (6). Suppose 
there exists two solutions 𝜙1(𝒓) and 𝜙2(𝒓), let 𝑢(𝒓) ∶= 𝜙1(𝒓) − 𝜙2(𝒓) be the difference between two solutions, and B = R2 × ℝ be a 
tubular cell that extends to ifinity in the 𝑧-direction. By Green’s first identity, we have

0 = ∫
B 

𝑢Δ𝑢𝑑𝒓 = ∫
B 

∇ ⋅ (𝑢∇𝑢) − (∇𝑢)2𝑑𝒓 = ∫
𝜕B 

𝑢∇𝑢 ⋅ 𝑑𝑺 − ∫
B 

(∇𝑢)2 𝑑𝒓 . (12)

The boundary term in the RHS cancels by periodicity in the 𝑥𝑦-plane as well as lim 
𝑧→±∞

𝑢(𝒓) = 0, hence ∇𝑢(𝒓) ≡ 𝟎 in B. Accordingly, we 
have 𝑢(𝒓) ≡ 0, which ensures the uniqueness of the solution. □

For such a well-defined quasi-2D Coulomb system, the electrostatic interaction energy 𝑈 is given by

𝑈 (𝒓1,… , 𝒓𝑁 ) = 1
2
∑
𝒎

𝑁∑
𝑖=1 

𝑁∑
𝑗=1 

′ 𝑞𝑖𝑞𝑗|𝒓𝑖 − 𝒓𝑗 +M| , (13)

where the notation ``′'' represents that the 𝑖 = 𝑗 case is excluded when 𝒎 = 𝟎. The corresponding force on each particle is 𝑭 𝑖 = −∇𝒓𝑖𝑈 , 
for 𝑖 = 1,2,… ,𝑁 . It is remarked that, though the quasi-2D Coulomb summation is absolutely convergent, due to the long-range nature 
of Coulomb interaction, directly truncating the series for computing energy or force will lead to slow convergence with a complexity 
of O(𝑁2).
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2.2. Ewald2D summation revisited

Throughout the remainder sections, we will extensively use Fourier transforms for the DPBCs, which leads to the well-known 
Ewald2D [24,31,32] formula for quasi-2D Coulomb systems. For ease of discussion, the mathematical notations and definitions are 
first provided.

Definition 2.3. (Quasi-2D Fourier transform) Let 𝑓 (𝝆, 𝑧) be a function that is doubly-periodic in 𝑥𝑦-dimensions, its quasi-2D Fourier 
transform is dfined by

𝑓 (𝒌, 𝜅) ∶= ∫
R2

∫
ℝ 

𝑓 (𝝆, 𝑧)𝑒−i𝒌⋅𝝆𝑒−i𝜅𝑧𝑑𝑧𝑑𝝆 . (14)

The function 𝑓 (𝝆, 𝑧) can be recovered from the corresponding inverse quasi-2D Fourier transform:

𝑓 (𝝆, 𝑧) = 1 
2𝜋𝐿𝑥𝐿𝑦

∑
𝒌∈K2

∫
ℝ 

𝑓 (𝒌, 𝜅)𝑒i𝒌⋅𝝆𝑒i𝜅𝑧𝑑𝜅 . (15)

In order to calculate Eq. (3), the Ewald splitting based methods [33] are often adopted. The idea of the Ewald splitting technique 
can be understood as decomposing the source term 𝑔(𝒓) of Eq. (2) into the sum of short-range and long-range components:

𝑔(𝒓) = [𝑔(𝒓) − (𝑔 ∗ 𝜏)(𝒓)] + (𝑔 ∗ 𝜏)(𝒓) ∶= 𝑔𝑠(𝒓) + 𝑔𝓁(𝒓) , (16)

where the symbol ``∗'' denotes the convolution operator dfined in Eq. (A.1), and 𝜏(𝒓) is the screening function. In the standard Ewald 
splitting [33,34] for quasi-2D systems, 𝜏 is chosen to be a Gaussian function that is periodized in the 𝑥𝑦-plane, hence 𝜏 is also a 
Gaussian,

𝜏(𝝆, 𝑧) =
∑
𝒎

𝜋−3∕2𝛼3𝑒−𝛼2|𝒓+M|2 , 𝜏(𝒌, 𝜅) = 𝑒−(𝑘
2+𝜅2)∕(4𝛼2) , (17)

where 𝛼 > 0 is a parameter to be optimized for balancing the computational cost in short-range and long-range components. The 
electrostatic potential at the 𝑖th particle location can be expressed as

𝜙(𝒓𝑖) ∶= 𝜙𝑠(𝒓𝑖) + 𝜙𝓁(𝒓𝑖) − 𝜙𝑖
self

, (18)

where the short-range (𝜙𝑠) and long-range (𝜙𝓁) components are given as:

𝜙𝑠(𝒓𝑖) =
∑
𝒎

𝑁∑
𝑗=1 

′
𝑞𝑗erfc(𝛼

|||𝒓𝑖𝑗 +M|||)|||𝒓𝑖𝑗 +M||| , (19)

𝜙𝓁(𝒓𝑖) =
∑
𝒎

𝑁∑
𝑗=1 

𝑞𝑗erf(𝛼
|||𝒓𝑖𝑗 +M|||)|||𝒓𝑖𝑗 +M||| , (20)

with 𝒓𝑖𝑗 ∶= 𝒓𝑖 − 𝒓𝑗 and the error function erf(⋅) and complementary error function erfc(⋅) dfined as

erf(𝑥) ∶= 2 √
𝜋

𝑥 

∫
0 

𝑒−𝑡2𝑑𝑡  and erfc(𝑥) ∶= 1 − erf(𝑥) , (21)

respectively. In Eq. (19), 
∑′

indicates that the sum excludes the self interaction term when 𝑗 = 𝑖 and 𝒎 = 𝟎; and in Eq. (18), 𝜙𝑖
self

is 
the unwanted interaction between the Gaussian and point source, which should also be subtracted for consistency,

𝜙𝑖
self

= lim 
𝑟→0

𝑞𝑖erf(𝛼𝑟)
𝑟 

= 2𝛼√
𝜋
𝑞𝑖 , (22)

where 𝑟 =
√

𝜌2 + 𝑧2 and 𝜌 = |𝝆|. It is clear that 𝜙𝑠 converges absolutely and rapidly due to the Gaussian screening, one can efficiently 
evaluate it in real space by simple truncation. Conversely, 𝜙𝓁 is still slowly decaying in real space but the interaction becomes smooth 
– the singularity of 1∕𝑟 as 𝑟 → 0 is removed, making 𝜙𝓁 fast convergent in the Fourier space. The detailed formulation for the 2D 
Fourier expansion of 𝜙𝓁 is provided below.

Lemma 2.4. By Fourier transform in the periodic 𝑥𝑦 dimensions, 𝜙𝓁 can be written as the following series summation in 𝑘-space:

𝜙𝓁(𝒓𝑖) =
∑
𝒌≠𝟎

𝜙𝒌𝓁(𝒓𝑖) + 𝜙𝟎
𝓁(𝒓𝑖) , (23)

where the non-zero modes read
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𝜙𝒌𝓁(𝒓𝑖) =
𝜋

𝐿𝑥𝐿𝑦

𝑁∑
𝑗=1 

𝑞𝑗
𝑒i𝒌⋅𝝆𝑖𝑗

𝑘 
[
𝜉+(𝑘, 𝑧𝑖𝑗 ) + 𝜉−(𝑘, 𝑧𝑖𝑗 )

]
, (24)

with 𝝆𝑖𝑗 = (𝑥𝑖 − 𝑥𝑗 , 𝑦𝑖 − 𝑦𝑗 ), 𝑧𝑖𝑗 = |𝑧𝑖 − 𝑧𝑗 |, and

𝜉±(𝑘, 𝑧𝑖𝑗 ) ∶= 𝑒±𝑘𝑧𝑖𝑗 erfc
(

𝑘 
2𝛼

± 𝛼𝑧𝑖𝑗

)
, (25)

and the 0-th mode is

𝜙𝟎
𝓁(𝒓𝑖) = − 2𝜋

𝐿𝑥𝐿𝑦

𝑁∑
𝑗=1 

𝑞𝑗

[
𝑧𝑖𝑗erf(𝛼𝑧𝑖𝑗 ) +

𝑒−(𝛼𝑧𝑖𝑗 )
2

𝛼
√

𝜋

]
. (26)

Eqs. (19), (22) and (23) constitute the well-known Ewald2D summation, which has been derived through various methods [24, 
34,31,32,35]. An alternative derivation is provided in Appendix B.

The Ewald2D summation is the exact solution and does not involve any uncontrolled approximation. However, two significant 
drawbacks limit its application for large-scale simulations:

• Even with optimal choice of parameter 𝛼, computing the interaction energy 𝑈 for an 𝑁 -particle system through Eqs. (19), (22)

and (23) takes O(𝑁2) complexity, which is worse than O(𝑁3∕2) for that of the Ewald3D, the fully-periodic case.

• The function 𝜉±(𝑘, 𝑧𝑖𝑗 ) is ill-conditioned: It grows exponentially as 𝑘𝑧𝑖𝑗 grows, leading to catastrophic error cancellation in actual 
computations with prescribed machine precision.

In this work, we develop an algorithm framework to address these two issues. As will be shown in Section 3, we introduce the 
SOE approximation and a forward recursive approach, which reduce the computational complexity from O(𝑁2) to O(𝑁7∕5) without 
losing accuracy, while the ill-conditioning issue is also properly handled. We further introduce a random batch importance sampling 
technique, outlined in Section 4, yielding an optimal complexity of O(𝑁), allowing large-scale simulations of quasi-2D Coulomb 
systems.

2.3. Error estimates for the Ewald2D summation

Although the Ewald2D method is a widely recognized, standard technique, its theoretical error analysis remains underdeveloped. 
In this section, we provide a truncation error analysis for the Ewald2D summation. The truncation error is clearly cofiguration 
dependent. Here the estimation is analyzed based on the ideal-gas assumption [36], which was used by Kolafa and Perram [37] in 
analyzing the Ewald3D case. Details of the ideal-gas assumption are summarized in Appendix C. The root mean square (RMS) error 
is used to measure the truncation error in a given physical quantity, which is dfined as

ℰRMS ∶=

√√√√ 1 
𝑁

𝑁∑
𝑖=1 

||ℰ𝑖
||2 , (27)

where ℰ𝑖 is the absolute error in the physical quantity due to 𝑖th particle, and 𝑁 is the total number of particles.

In the following analysis, we denote the cutoff radii in real and Fourier spaces as 𝑟𝑐 and 𝑘𝑐 , i.e., one only calculates the terms 
satisfying |||𝒓𝑖𝑗 +M||| ≤ 𝑟𝑐 and |𝒌| ≤ 𝑘𝑐 in real and Fourier spaces, respectively. Our main findings are summarized as follows.

Theorem 2.5. Under the ideal-gas assumption, the real space and Fourier space truncation errors for the Ewald2D summation can be estimated 
by

ℰ𝜙𝑠
(𝑟𝑐 , 𝛼) ≈

√
4𝜋𝑄
𝑉

𝒬𝑠(𝛼, 𝑟𝑐) , ℰ𝜙𝓁
(𝑘𝑐, 𝛼) ≈

√
8𝛼2𝑄
𝜋𝑉

𝑘
−3∕2
𝑐 𝑒−𝑘2𝑐∕(4𝛼

2) , (28)

where 𝑄 =
∑𝑁

𝑖=1 𝑞
2
𝑖

and

𝒬𝑠(𝛼, 𝑟𝑐) ∶=
2𝑒−𝛼2𝑟2𝑐 erfc(𝛼𝑟𝑐)

𝛼
√

𝜋
− 𝑟𝑐erfc(𝛼𝑟𝑐)2 −

√
2 

𝜋𝛼2
erfc(

√
2𝛼𝑟𝑐) . (29)

Notably,

𝒬𝑠(𝛼, 𝑟𝑐)→
1 
4𝜋

𝛼−4𝑟−3𝑐 𝑒−2𝛼
2𝑟2𝑐 as 𝛼𝑟𝑐 →∞ . (30)

The proof of Theorem 2.5 is provided in Appendix D. An interesting observation is that at the limit 𝛼𝑟𝑐 →∞, the truncation error 
estimates for Ewald2D sum become identical as that for Ewald3D derived in [37]. Same observation has been made by Tornberg and 
her coworkers through numerical tests [11,25]. Here, Theorem 2.5 justfies this phenomenon.
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Based on Theorem 2.5, one can further obtain the error estimates of the interaction energy and forces, summarized in Proposi

tion 2.6.

Proposition 2.6. Under the ideal-gas assumption, the real space and Fourier space RMS errors of energy and forces by the truncated Ewald2D 
summation can be estimated by

ℰ𝑈𝑠
(𝑟𝑐 , 𝛼) ≈𝑄

√
1 
2𝑉

𝛼−2𝑟
−3∕2
𝑐 𝑒−𝛼2𝑟2𝑐 , ℰ𝑈𝓁

(𝑘𝑐, 𝛼) ≈𝑄

√
8𝛼2
𝜋𝑉

𝑘
−3∕2
𝑐 𝑒−𝑘2𝑐∕(4𝛼

2) , (31)

and

ℰ𝑭 𝑖
𝑠
(𝑟𝑐 , 𝛼) ≈ 2|𝑞𝑖|√𝑄 

𝑉
𝑟
−1∕2
𝑐 𝑒−𝛼2𝑟2𝑐 , ℰ𝑭 𝑖

𝓁
(𝑘𝑐, 𝛼) ≈ 4|𝑞𝑖|√ 𝑄 

𝜋𝑉
𝛼𝑘

−1∕2
𝑐 𝑒−𝑘2𝑐∕(4𝛼

2) , (32)

as 𝛼𝑟𝑐 →∞ and 𝑘𝑐∕2𝛼 →∞, respectively.

Remark 2.7. In practice, one needs to pick the pair of 𝑟𝑐 and 𝑘𝑐 such that the series in real and Fourier spaces converge with the 
same speed. By Theorem 2.5, they can be chosen as

𝑟𝑐 =
𝑠 
𝛼

,  and 𝑘𝑐 = 2𝑠𝛼 , (33)

such that both truncation errors decay as

ℰ𝜙𝑠
(𝑟𝑐 , 𝛼) ≈ℰ𝜙𝓁

(𝑘𝑐, 𝛼) ∼𝑄

√
𝑠 

𝛼𝑉

𝑒−𝑠2

𝑠2
. (34)

This indicates that the truncation error can be well controlled by the prescribed parameter 𝑠.

It should be noticed that, since the real space interaction is short-ranged, it only requires computation of neighboring pairs 
within the cutoff radius 𝑟𝑐 . Many powerful techniques have been developed to reduce the cost for such short-range interactions into 
O(𝑁) complexity, including the Verlet list [38], the linked cell list [39] and more recently the random batch list [40] algorithms. 
Consequently, the main challenge lies in the long-range component calculation, which will be discussed in Section 3.

2.4. Extension to systems with charged slabs

In the presence of charged slabs, boundary layers naturally arise -- opposite ions accumulate near the interface, forming an 
electric double layer. The structure of electric double layers plays essential role for properties of interfaces and has caught much 
attention [41--43]. Since charges on the slabs are often represented as a continuous surface charge density, we present the Ewald2D 
formulation with such a situation can be well treated.

Without loss of generality, one assumes that the two charged slab walls are located at 𝑧 = 0 and 𝑧 =𝐿𝑧 and with smooth surface 
charge densities 𝜎bot (𝝆) and 𝜎top(𝝆), respectively. Note that both 𝜎bot (𝝆) and 𝜎top(𝝆) are doubly-periodic according to the quasi-2D 
geometry. In such cases, the charge neutrality condition of the system reads

𝑁∑
𝑖=1 

𝑞𝑖 + ∫
R2

[
𝜎top(𝝆) + 𝜎bot (𝝆)

]
𝑑𝝆 = 0 . (35)

Under such setups, the potential 𝜙 can be written as the sum of particle-particle and particle-slab contributions,

𝜙(𝒓) = 𝜙p-p(𝒓) +𝜙p-s(𝒓) . (36)

Here, 𝜙p-p satifies Eq. (2) associated with the boundary condition Eq. (11). Note that Eq. (6) does not apply since the particles are 
overall non-neutral. 𝜙p-s satifies

−Δ𝜙p-s(𝒓) = 4𝜋ℎ(𝒓) , with ℎ(𝒓) = 𝜎bot (𝝆)𝛿(𝑧) + 𝜎top(𝝆)𝛿(𝑧−𝐿𝑧) , (37)

and with the boundary condition

lim 
𝑧→±∞

𝜙p-s(𝒓) = ∓ 2𝜋
𝐿𝑥𝐿𝑦

⎛⎜⎜⎝∫R2 𝜎bot (𝝆)|𝑧|𝑑𝝆+ ∫
R2

𝜎top(𝝆)|𝑧−𝐿𝑧|𝑑𝝆⎞⎟⎟⎠ (38)

which is simply the continuous analog of Eq. (11).

The potential 𝜙p-p then follows immediately from Lemma 2.4

𝜙p-p(𝒓𝑖) = 𝜙𝑠(𝒓𝑖) +
∑
𝒌≠𝟎

𝜙𝒌𝓁(𝒓𝑖) + 𝜙𝟎
𝓁(𝒓𝑖) − 𝜙𝑖

self
, (39)
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with each components given by Eqs. (19), (24), (26), and (22), respectively. The 2D Fourier series expansion of 𝜙p-s is provided in 
the following Theorem 2.8, where its convergence rate is controlled by the smoothness of surface charge densities.

Theorem 2.8. Suppose that 𝜎bot and 𝜎top are two-dimensional Fourier transform (see Lemma A.3) of 𝜎bot and 𝜎top, respectively. By Fourier 
analysis, the particle-slab component of the electric potential is given by

𝜙p-s(𝒓𝑖) =
2𝜋

𝐿𝑥𝐿𝑦

∑
𝒌≠𝟎

𝑒i𝒌⋅𝝆𝑖

𝑘 
[
𝜎bot (𝒌)𝑒−𝑘|𝑧𝑖| + 𝜎top(𝒌)𝑒−𝑘|𝑧𝑖−𝐿𝑧|]+ 𝜙𝟎

p-s
(𝒓𝑖) , (40)

where the 0-th mode reads

𝜙𝟎
p-s
(𝒓𝑖) = − 2𝜋

𝐿𝑥𝐿𝑦

[
𝜎bot (𝟎)|𝑧𝑖|+ 𝜎top(𝟎)|𝑧𝑖 −𝐿𝑧|] . (41)

Proof. For 𝒌 ≠ 𝟎, applying the quasi-2D Fourier transform to both sides of Eq. (37) yields

𝜙p-s(𝒌, 𝜅) =
4𝜋

𝑘2 + 𝜅2

[
𝜎bot (𝒌) + 𝜎top(𝒌)𝑒−i𝜅𝐿𝑧

]
. (42)

For 𝒌 = 𝟎, one first applies the 2D Fourier transform in 𝑥𝑦 to obtain(
−𝜕2𝑧 + 𝑘2

)
𝜙(𝒌, 𝑧) = 4𝜋

[
𝜎bot (𝒌)𝛿(𝑧) + 𝜎top(𝒌)𝛿(𝑧−𝐿𝑧)

]
. (43)

By integrating both sides twice and taking 𝒌 = 𝟎, the 0-th mode follows

𝜙(𝟎, 𝑧) = −2𝜋
[
𝜎bot (𝟎)|𝑧|+ 𝜎top(𝟎)|𝑧−𝐿𝑧|]+𝐴0𝑧+𝐵0 , (44)

where 𝐴0 and 𝐵0 are undetermined constants. Finally, applying the corresponding inverse transforms to 𝜙p-s(𝒌, 𝜅) and 𝜙(𝟎, 𝑧) such 
that the boundary conditions Eq. (38) is matched, one has 𝐴0 = 𝐵0 = 0. The proof of Eqs. (40)-(41) is then completed. □

Consider the ideal case that both 𝜎bot and 𝜎top are uniformly distributed. This simple setup is widely used in many studies on 
interface properties. Since in this case all nonzero modes vanish, one has

𝜙p-s(𝒓𝑖) = 𝜙𝟎
p-s
(𝒓𝑖) = −2𝜋

[
𝜎top(𝐿𝑧 − 𝑧𝑖) + 𝜎bot (𝑧𝑖 − 0))

]
, (45)

for all 𝑧𝑖 ∈ [0,𝐿𝑧]. Here zero is retained to indicate the location of bottom slab.

For completeness, Proposition 2.9 provides the result of the well-definedness.

Proposition 2.9. The total electrostatic potential 𝜙 is well-defined.

Proof. For any finite 𝑧, 𝜙 is clearly well dfined. Consider the case of 𝑧→ ±∞. By boundary conditions (11) and (38) and the charge 
neutrality condition Eq. (35), one has

lim 
𝑧→±∞

𝜙(𝒓) = lim 
𝑧→±∞

[
𝜙p-p(𝒓) + 𝜙p-s(𝒓)

]
= ± 2𝜋

𝐿𝑥𝐿𝑦

⎡⎢⎢⎣
𝑁∑
𝑗=1 

𝑞𝑗𝑧𝑗 + ∫
R2

(
0𝜎bot (𝝆) +𝐿𝑧𝜎top(𝝆)

)
𝑑𝝆

⎤⎥⎥⎦
(46)

which is a finite constant. Thus the proof is completed. □

For the particle-slab interaction formulation, we observe a constant discrepancy between Eq. (45) derived here and those in liter

ature [44,45]. It is because here one starts with the precise Ewald2D summation approach, different from the approach of employing 
approximation techniques to transform the original doubly-periodic problem into a triply-periodic problem first, and subsequently 
introducing charged surfaces. This constant discrepancy makes no difference in force calculations for canonical ensembles. However, 
for simulations under isothermal-isobaric ensembles, this 𝐿𝑧-dependent value is important for the pressure calculations [46]. And 
one should use Eq. (45) derived here for correct simulations.

Based on the expression of electrostatic potential 𝜙 derived above, the total electrostatic energy can be computed via the Ewald2D 
summation formula:

𝑈 =𝑈p-p +𝑈p-s , with 𝑈p-p ∶=𝑈𝑠 +
∑
𝒌≠𝟎

𝑈𝒌
𝓁 +𝑈𝟎

𝓁 −𝑈self , (47)

where 𝑈∗ =
∑

𝑖 𝜙∗ with ∗ representing any of the subscripts used in Eq. (47).
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3. Sum-of-exponentials Ewald2D method

In this section, we introduce a novel summation method by using the SOE approximation in evaluating 𝜉±(𝑘, 𝑧) and 𝜕𝑧𝜉±(𝑘, 𝑧). This 
method significantly reduces the overall complexity of Ewald2D to 𝑂(𝑁7∕5) without compromising accuracy. Error and complexity 
analyses are also provided.

We first give a brief overview of the SOE kernel approximation method. For a given precision 𝜀, the objective of an SOE approxi

mation is to find suitable weights 𝑤𝑙 and exponents 𝑠𝑙 such that ∀𝑥 ∈ℝ, the following inequality holds:||||||𝑓 (𝑥) −
𝑀∑
𝑙=1 

𝑤𝑙𝑒
−𝑠𝑙|𝑥||||||| ≤ 𝜀 , (48)

where 𝑀 is the number of exponentials. Various efforts have been made in literature to approximate different kernel functions using 
SOE, as documented in works such as [47--51]. For instance, the Gaussian kernel 𝑓 (𝑥) = 𝑒−𝑥2 is widely celebrated and plays a crucial 
role in numerical PDEs [52,53], and is particularly relevant for the purpose of this work. The SOE approximation for Gaussians can 
be understood as discretizing its inverse Laplace transform representation, denoted as

𝑒−𝑥2 = 1 
2𝜋i ∫

Γ 
𝑒𝑧
√

𝜋

𝑧 
𝑒−

√
𝑧|𝑥|𝑑𝑧 , (49)

where Γ is a suitably chosen contour.

To achieve higher accuracy, several classes of contours have been studied, such as Talbot contours [54], parabolic contours [55], 
and hyperbolic contours [56]. An alternative approach is developed by Trefethen et al. [57], where a sum-of-poles expansion is 
constructed by the best supremum-norm rational approximants. A comprehensive review of these techniques has been discussed 
by Jiang and Greengard [58]. Since the Laplace transform of an SOE is a sum-of-poles expansion [59], the model reduction (MR) 
technique can be employed to further reduce the number of exponentials 𝑀 while achieving a specfied accuracy 𝜖. When combining 
with the MR, convergence rates at O(6−𝑀 ) ∼ O(7−𝑀 ) can be achieved [58].

Additionally, kernel-independent SOE methods have been developed, such as the black-box method [59] and Vallée-Poussin 
model reduction (VPMR) method [60]. Specially, the VPMR method integrates the flexibility of Vallée-Poussin sums into the MR 
technique, demonstrating the highest convergence rate of O(9−𝑀 ) in constructing SOE approximation for Gaussians. This method is 
also bandwidth-controllable and uniformly convergent [61]. Due to these advantages, we will utilize the VPMR as the SOE construction 
tool in all the numerical experiments throughout this paper.

3.1. SOE approximations of 𝜉±(𝑘, 𝑧)

To start with, we introduce a useful identity which is a special case of the Laplace transform ([62], pp. 374-375; [63], pp. 688).

Lemma 3.1. Suppose that 𝑎, 𝑏, and 𝑐 are three complex parameters where the real part of 𝑎 satifies ℛ(𝑎)> 0. For an arbitrary real variable 
𝑥, the following identity holds:

∞ 

∫
𝑥 

𝑒−(𝑎𝑡
2+2𝑏𝑡+𝑐)𝑑𝑡 = 1

2

√
𝜋

𝑎 
𝑒(𝑏

2−𝑎𝑐)∕𝑎erfc

(√
𝑎𝑥+ 𝑏 √

𝑎

)
. (50)

Substituting 𝑎 = 𝛼2, 𝑏= 𝑘∕2, 𝑐 = 0, 𝑥 = ±𝑧 into Eq. (50) yields the integral representations of 𝜉±(𝑘, 𝑧):

𝜉±(𝑘, 𝑧) = 2𝛼√
𝜋
𝑒−𝑘2∕(4𝛼2)𝑒±𝑘𝑧

∞ 

∫
±𝑧 

𝑒−𝛼2𝑡2−𝑘𝑡𝑑𝑡 . (51)

We then approximate the Gaussian factor 𝑒−𝛼2𝑡2 in the integrand of Eq. (51) by an 𝑀 -term SOE on the whole real axis, as

𝑒−𝛼2𝑡2 ≈
𝑀∑
𝑙=1 

𝑤𝑙𝑒
−𝑠𝑙𝛼|𝑡| . (52)

Inserting Eq. (52) into Eq. (51) results in an approximation to 𝜉±(𝑘, 𝑧):

𝜉±
𝑀
(𝑘, 𝑧) ∶= 2𝛼√

𝜋
𝑒−𝑘2∕(4𝛼2)𝑒±𝑘𝑧

∞ 

∫
±𝑧 

𝑀∑
𝑙=1 

𝑤𝑙𝑒
−𝑠𝑙𝛼|𝑡|𝑒−𝑘𝑡𝑑𝑡 . (53)

The integral can be calculated analytically (with 𝛼, 𝑧 > 0), yielding

𝜉+
𝑀
(𝑘, 𝑧) = 2𝛼√

𝜋
𝑒−𝑘2∕(4𝛼2)

𝑀∑
𝑙=1 

𝑤𝑙
𝑒−𝛼𝑠𝑙𝑧

𝛼𝑠𝑙 + 𝑘
(54)
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and

𝜉−
𝑀
(𝑘, 𝑧) = 2𝛼√

𝜋
𝑒−𝑘2∕(4𝛼2)

𝑀∑
𝑙=1 

𝑤𝑙

[
− 𝑒−𝛼𝑠𝑙𝑧

𝛼𝑠𝑙 − 𝑘
+

2𝛼𝑠𝑙𝑒−𝑘𝑧

(𝛼𝑠𝑙)2 − 𝑘2

]
. (55)

Similarly, one can also obtain the approximation of 𝜕𝑧𝜉±(𝑘, 𝑧), given by

𝜕𝑧𝜉
+
𝑀
(𝑘, 𝑧) ∶= −2𝛼2√

𝜋
𝑒−𝑘2∕(4𝛼2)

𝑀∑
𝑙=1 

𝑤𝑙𝑠𝑙
𝑒−𝛼𝑠𝑙𝑧

𝛼𝑠𝑙 + 𝑘
(56)

and

𝜕𝑧𝜉
−
𝑀
(𝑘, 𝑧) ∶= −2𝛼2√

𝜋
𝑒−𝑘2∕(4𝛼2)

𝑀∑
𝑙=1 

𝑤𝑙𝑠𝑙

[
− 𝑒−𝛼𝑠𝑙𝑧

𝛼𝑠𝑙 − 𝑘
+ 2𝑘𝑒−𝑘𝑧

(𝛼𝑠𝑙)2 − 𝑘2

]
. (57)

The approximation error, which relies on the prescribed precision 𝜀 of the SOE, also has spectral convergence in 𝑘. This is summarized 
in Theorem 3.2.

Theorem 3.2. Given an 𝑀 -term SOE expansion for the Gaussian kernel 𝑓 (𝑥) = 𝑒−𝛼2𝑥2 satisfying Eq. (48), the approximation of 𝜉± derived 
from Eqs. (51)-(55) has a global error bound

|||𝜉±(𝑘, 𝑧) − 𝜉±
𝑀
(𝑘, 𝑧)||| ≤ 2𝛼𝑒−𝑘2∕(4𝛼2)√

𝜋𝑘 
𝜀 , (58)

and for the approximation of 𝜕𝑧𝜉± using Eqs. (56)-(57), the error bound is given by

|||𝜕𝑧𝜉±(𝑘, 𝑧) − 𝜕𝑧𝜉
±
𝑀
(𝑘, 𝑧)||| ≤ 4𝛼𝑒−𝑘2∕(4𝛼2)√

𝜋
𝜀 , (59)

which is independent of 𝑧 and decays rapidly with 𝑘.

Proof. To prove Eq. (58), one can directly subtract Eq. (53) from Eq. (51) to obtain:|||𝜉±(𝑘, 𝑧) − 𝜉±
𝑀
(𝑘, 𝑧)|||

≤ 2𝛼√
𝜋
𝑒−𝑘2∕(4𝛼2)

∞ 

∫
±𝑧 

𝑒±𝑘𝑧−𝑘𝑡

||||||𝑒−𝛼2𝑡2 −
𝑀∑
𝑙=1 

𝑤𝑙𝑒
−𝛼𝑠𝑙|𝑡|||||||𝑑𝑡

≤ 2𝛼√
𝜋
𝑒−𝑘2∕(4𝛼2)𝜀

∞ 

∫
±𝑧 

𝑒±𝑘𝑧−𝑘𝑡𝑑𝑡

=2𝛼𝑒−𝑘2∕(4𝛼2)√
𝜋𝑘 

𝜀 ,

(60)

where from the second to the third line, one uses the boundness of SOE approximation error, i.e., Eq. (48). For the approximation 
error of 𝜕𝑧𝜉±, the proof is similar. One can subtract the 𝑧-derivative of Eq. (53) from the 𝑧-derivative of Eq. (51) to obtain|||𝜕𝑧𝜉±(𝑘, 𝑧) − 𝜕𝑧𝜉

±
𝑀
(𝑘, 𝑧)|||

≤ 2𝛼√
𝜋
𝑒−𝑘2∕(4𝛼2)

⎛⎜⎜⎝
∞ 

∫
±𝑧 

𝑘𝑒±𝑘𝑧−𝑘𝑡

||||||𝑒−𝛼2𝑡2 −
𝑀∑
𝑙=1 

𝑤𝑙𝑒
−𝛼𝑠𝑙 |𝑡|||||||𝑑𝑡+

||||||𝑒−𝛼2𝑧2 −
𝑀∑
𝑙=1 

𝑤𝑙𝑒
−𝛼𝑠𝑙|𝑧|||||||

⎞⎟⎟⎠
≤ 2𝛼√

𝜋
𝑒−𝑘2∕(4𝛼2)𝜀

⎛⎜⎜⎝𝑘
∞ 

∫
±𝑧 

𝑒±𝑘𝑧−𝑘𝑡𝑑𝑡+ 1
⎞⎟⎟⎠

=4𝛼𝑒−𝑘2∕(4𝛼2)√
𝜋

𝜀 .

(61)

Again, the boundness of the SOE approximation error is used in the proof, i.e., from the second to the third line. □

For the 𝟎-th frequency term Eq. (26) consisting of erf(⋅) and Gaussian functions, a similar approach can be employed to construct 
the corresponding SOE expansions. One has
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Fig. 1. The absolute error of the SOE expansion for (a) 𝜉±(𝑘, 𝑧) and (b) erf(𝛼𝑧) is plotted as a function of 𝑧, while fixing 𝑘= 𝛼 = 1; absolute error of the SOE expansion 
of (c) 𝜉+(𝑘, 𝑧) and (d) 𝜉−(𝑘, 𝑧) as a function of 𝑘2 , while fixing 𝑧 = 1. Data are presented for SOEs with varying numbers of exponentials, 𝑀 = 4, 8 and 16. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

erf(𝛼𝑧) ≈ 2 √
𝜋

𝛼𝑧 

∫
0 

𝑀∑
𝑙=1 

𝑤𝑙𝑒
−𝑠𝑙𝑡𝑑𝑡 = 2 √

𝜋

𝑀∑
𝑙=1 

𝑤𝑙

𝑠𝑙
(1 − 𝑒−𝛼𝑠𝑙𝑧) . (62)

One can prove that||||||erf(𝛼𝑧) − 2 √
𝜋

𝑀∑
𝑙=1 

𝑤𝑙

𝑠𝑙
(1 − 𝑒−𝛼𝑠𝑙𝑧)

|||||| ≤
2𝛼𝐿𝑧√

𝜋
𝜀 , (63)

where one assumes that 𝑧 ∈ [0,𝐿𝑧], as for quasi-2D systems all particles are cofined within a narrow region in 𝑧.

The advantages and novelty of our SOE approach are summarized as follows. Firstly, Theorem 3.2 demonstrates that the approx

imation error of our SOE method is uniformly controlled in 𝑧 and decays exponentially in 𝑘. Secondly, the resulting approximation 
𝜉±
𝑀

is well-conditioned, thus addressing the issue of catastrophic error cancellation when evaluating 𝜉± . Achieving these properties 
(see Fig. 1) are crucial for the subsequent algorithm design.

Remark 3.3. The choice of SOE approximation is not unique. Instead of approximating the Gaussian factor in the integrand with an 
SOE, a more straightforward approach might be approximating the complementary error function in 𝜉± using an SOE. Unfortunately, 
this will introduce an error proportional to 𝑒𝑘𝑧𝜀, which grows exponentially with 𝑘, resulting in a much larger numerical error in the 
Fourier space summation for the long-range components of Coulomb energy and forces.

3.2. SOEwald2D summation and its fast evaluation

In this section, we derive the SOE-reformulated Ewald2D (SOEwald2D) summation, and the corresponding fast evaluation scheme. 
Let us first consider the contribution of the 𝒌-th mode (𝒌 ≠ 𝟎) to the long-range interaction energy, denoted as 𝑈𝒌

𝓁 , which can be 
written in the following pairwise summation form

𝑈𝒌
𝓁 = 1

2

𝑁∑
𝑖=1 

𝑞𝑖𝜙
𝒌
𝓁(𝒓𝑖) =

𝜋

𝐿𝑥𝐿𝑦

∑
1≤𝑗<𝑖≤𝑁

𝑞𝑖𝑞𝑗𝜑
𝒌(𝒓𝑖, 𝒓𝑗 ) +

𝑄𝜋

𝑘𝐿𝑥𝐿𝑦

erfc
(

𝑘 
2𝛼

)
, (64)

where we dfine

𝜑𝒌(𝒓𝑖, 𝒓𝑗 ) ∶=
𝑒i𝒌⋅𝝆𝑖𝑗

𝑘 
[
𝜉+(𝑘, 𝑧𝑖𝑗 ) + 𝜉−(𝑘, 𝑧𝑖𝑗 )

]
. (65)
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Substituting the SOE approximation of 𝜉±(𝑘, 𝑧) described in Eqs. (54) and (55), a new SOE-based formulation can be obtained, denoted 
as 𝑈𝒌

𝓁,SOE
. This approximation is achieved by substituting 𝜑𝒌(𝒓𝑖, 𝒓𝑗 ) with

𝜑𝒌
SOE

(𝒓𝑖, 𝒓𝑗 ) ∶=
𝑒i𝒌⋅𝝆𝑖𝑗

𝑘 
[
𝜉+
𝑀
(𝑘, 𝑧𝑖𝑗 ) + 𝜉−

𝑀
(𝑘, 𝑧𝑖𝑗 )

]
= 2𝛼𝑒−𝑘2∕(4𝛼2)√

𝜋𝑘 
𝑒i𝒌⋅𝝆𝑖𝑗

𝑀∑
𝓁=1

𝑤𝑙

𝛼2𝑠2
𝑙
− 𝑘2

(
2𝛼𝑠𝑙𝑒−𝑘𝑧𝑖𝑗 − 2𝑘𝑒−𝛼𝑠𝑙𝑧𝑖𝑗

)
.

(66)

For the 𝟎-th mode contribution 𝑈𝟎
𝓁 , an SOE-based reformulation can be similarly obtained according to Eq. (62):

𝑈𝟎
𝓁,SOE

= 1
2

𝑁∑
𝑖=1 

𝑞𝑖𝜙
𝟎
𝓁(𝒓𝑖) = − 2𝜋

𝐿𝑥𝐿𝑦

∑
1≤𝑗<𝑖≤𝑁

𝑞𝑖𝑞𝑗𝜑
𝟎
SOE

(𝒓𝑖, 𝒓𝑗 ) −
𝜋𝑄 

𝛼𝐿𝑥𝐿𝑦

, (67)

where

𝜑𝟎
SOE

(𝒓𝑖, 𝒓𝑗 ) ∶=
𝑀∑
𝑙=1 

𝑤𝑙√
𝜋

[2𝑧𝑖𝑗
𝑠𝑙

+
(
1 
𝛼
−

2𝑧𝑖𝑗
𝑠𝑙

)
𝑒−𝛼𝑠𝑙𝑧𝑖𝑗

]
. (68)

We now present an iterative approach to compute 𝑈𝒌
𝓁,SOE

for each 𝒌 with O(𝑁) complexity. For simplicity, consider pairwise sum 
in the following form:

𝑆 =
∑

1≤𝑗<𝑖≤𝑁

𝑞𝑖𝑞𝑗𝑒
i𝒌⋅𝝆𝑖𝑗 𝑒−𝛽𝑧𝑖𝑗 , (69)

where 𝛽 is a parameter satisfying ℛℯ(𝛽) > 0. It is clear that the pairwise sums in both 𝑈𝒌
𝓁,SOE

and 𝑈𝟎
𝓁,SOE

are in the form of Eq. (69), 
and direct evaluation takes O(𝑁2) cost.

To efficiently evaluate 𝑆 , we initially sort the particle indices based on their 𝑧 coordinates, such that 𝑖 > 𝑗 ⟺ 𝑧𝑖 > 𝑧𝑗 . Subse

quently, the summation can be rearranged into a separable and numerically stable form:

𝑆 =
𝑁∑
𝑖=1 

𝑞𝑖𝑒
i𝒌⋅𝝆𝑖 𝑒−𝛽𝑧𝑖

𝑖−1 ∑
𝑗=1 

𝑞𝑗𝑒
−i𝒌⋅𝝆𝑗 𝑒𝛽𝑧𝑗 (70)

=
𝑁∑
𝑖=1 

𝑞𝑖𝑒
i𝒌⋅𝝆𝑖 𝑒−𝛽(𝑧𝑖−𝑧𝑖−1)𝐴𝑖(𝛽) , (71)

with coefficients

𝐴𝑖(𝛽) =
𝑖−1 ∑
𝑗=1 

𝑞𝑗𝑒
−i𝒌⋅𝝆𝑗 𝑒−𝛽(𝑧𝑖−1−𝑧𝑗 ) . (72)

Clearly, 𝐴1(𝛽) = 0, 𝐴2(𝛽) = 𝑞1𝑒
−i𝒌⋅𝝆1 , and for 𝑖 ≥ 3, a recursive algorithm can be constructed to achieve O(𝑁) complexity in computing 

all the coefficients:

𝐴𝑖(𝛽) =𝐴𝑖−1(𝛽)𝑒−𝛽(𝑧𝑖−1−𝑧𝑖−2) + 𝑞𝑖−1𝑒
−i𝒌⋅𝝆𝑖−1 , 𝑖 = 3,⋯ ,𝑁. (73)

One can thus efficiently evaluate 𝑆 with another O(𝑁) operations by Eq. (71) and using the computed coefficients 𝑨(𝛽) =
(𝐴1(𝛽), ...,𝐴𝑁 (𝛽)). Consequently, the overall cost for evaluating the pairwise summation in forms of Eq. (69) is reduced to O(𝑁). 
Besides the iterative method discussed above, it is remarked that different fast algorithms based on SOE for 1D kernel summations 
have been developed [58,64], which can also be used under the framework described in this article for the summation in the non

periodic direction.

Remark 3.4. A similar iterative evaluation strategy can be developed based on Eq. (70) instead of Eq. (71), which may seem more 
straightforward. However, it will lead to uncontrolled exponential terms such as 𝑒𝛽𝑧𝑗 , affecting the numerical stability. The same 
issue occurs in the original Ewald2D summation, as has been discussed in Section 2.2. In our recursive scheme, by prior sorting of 
all particles in 𝑧, it follows that 𝑧𝑖 − 𝑧𝑖−1 > 0 and 𝑧𝑖−1 − 𝑧𝑗 ≥ 0 for all 𝑗 ≤ 𝑖 − 1, thus making all exponential terms in Eq. (71) with 
negative exponents, resolving the exponential blowup issue.

Finally, the long-range component of Coulomb interaction energy in Ewald2D summation is approximated via:

𝑈𝓁 ≈𝑈𝓁,SOE ∶=
∑
𝒌≠𝟎

𝑈𝒌
𝓁,SOE

+𝑈𝟎
𝓁,SOE

, (74)

where both 𝑈𝒌
𝓁,SOE

and 𝑈𝟎
𝓁,SOE

can be evaluated efficiently and accurately with linear complexity. In MD simulations, the force exerts 
on the 𝑖-th particle, 𝑭 𝑖, plays a significant role in the numerical integration of Newton’s equations. One can similarly develop fast 
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recursive algorithms to evaluate the SOE-reformulated forces, the detailed expressions for 𝑭 𝑖 are summarized in Appendix E. We 
finally summarize the SOEwald2D in Algorithm 1. Its error and complexity analysis will be discussed in the next sections.

Algorithm 1 The sum-of-exponentials Ewald2D method.

1: Input: Initialize the size of the simulation box (𝐿𝑥,𝐿𝑦,𝐿𝑧), as well as the positions, velocities, and charges of all particles. Choose a precision requirement 𝜀.

2: Precomputation stage: Determine Ewald splitting parameters 𝛼 and 𝑠 according to Eq. (34). Generate real and Fourier space cutoffs by 𝑟𝑐 = 𝑠∕𝛼 and 𝑘𝑐 = 2𝑠𝛼, 
respectively. Construct the SOE approximations of 𝜉±(𝑘, 𝑧) and erf(𝛼𝑧) following Section 3.1.

3: procedure (SOEwald2D)

4: Sort all the particles according to their 𝑧 coordinates, as 𝑧1 < 𝑧2 <⋯ < 𝑧𝑁 .

5: Compute 𝑈𝒌
𝓁,SOE

for |𝒌| ≤ 𝑘𝑐 as well as 𝑈 𝟎
𝓁,SOE

according to Section 3.2.

6: Compute 𝑈𝑠 by direct truncation in real space according to Eq. (19) with cutoff 𝑟𝑐 .
7: Compute 𝑈self according to Eqs. (22).

8: Compute 𝑈 =
∑|𝒌|≤𝑘𝑐

𝑈𝒌
𝓁,SOE

+𝑈 𝟎
𝓁,SOE

−𝑈self +𝑈𝑠 +𝑈p-s .

9: Compute forces 𝑭 𝑖 using a similar procedure as that of 𝑈 .

10: end procedure

11: Output: Total electrostatic energy 𝑈 and forces 𝑭 𝑖 .

3.3. Error analysis for the SOEwald2D algorithm

Here we derive error estimates for the SOEwald2D summation. The total error in the interaction energy 𝑈 consists of the truncation 
error and the SOE approximation error:

ℰ𝑈 ∶=ℰ𝑈𝑠
(𝑟𝑐 , 𝛼) +ℰ𝑈𝓁

(𝑟𝑐 , 𝛼) +
∑
𝒌≠𝟎

ℰ𝒌
𝑈𝓁 ,SOE

+ℰ𝟎
𝑈𝓁 ,SOE

, (75)

where the first two terms are the truncation error of Ewald2D summation and have already been provided in Proposition 2.6. The 
remainder two terms are the error due to the SOE approximation for the Fourier space components, where

ℰ𝒌
𝑈𝓁 ,SOE

∶=𝑈𝒌
𝓁 −𝑈𝒌

𝓁,SOE
, and ℰ𝟎

𝑈𝓁 ,SOE
∶=𝑈𝟎

𝓁 −𝑈𝟎
𝓁,SOE

. (76)

Theorem 3.5 provides upper bound error estimates, when the Debye-Hückel (DH) theory is assumed (see [10], and also Appendix F) 
to approximate the charge distribution at equilibrium.

Theorem 3.5. Given a set of SOE parameters 𝑤𝑙 and 𝑠𝑙 satisfying Eq. (48) and a charge distribution satisfying the DH theory, the SOE 
approximation error for the Fourier component of interaction energy satifies:

∑
𝒌≠𝟎

ℰ𝒌
𝑈𝓁 ,SOE

≤ 2𝜆2
𝐷
𝛼3𝑄√
𝜋

𝜀 , and ℰ𝟎
𝑈𝓁 ,SOE

≤
√

𝜋𝜆2
𝐷
(1 + 2𝛼2𝐿𝑧)𝑄
𝛼𝐿𝑥𝐿𝑦

𝜀 , (77)

respectively, where 𝜆𝐷 is the Debye length of the Coulomb system.

Proof. By definitions of 𝑈𝒌
𝓁 and 𝑈𝒌

𝓁,SOE
, one has

𝑈𝒌
𝓁 −𝑈𝒌

𝓁,SOE
= 𝜋

2𝐿𝑥𝐿𝑦

𝑁∑
𝑖=1 

∑
𝑗≠𝑖 

𝑞𝑖𝑞𝑗
𝑒i𝒌⋅𝝆𝑖𝑗

𝑘 
ℰ𝜉± , (78)

where

ℰ𝜉± ∶= |||𝜉+(𝑘, 𝑧𝑖𝑗 ) − 𝜉+
𝑀
(𝑘, 𝑧𝑖𝑗 )

|||+ |||𝜉−(𝑘, 𝑧𝑖𝑗 ) − 𝜉−
𝑀
(𝑘, 𝑧𝑖𝑗 )

||| . (79)

By Theorem 3.2, one has

|ℰ𝜉± | ≤ 4𝛼𝑒−𝑘2∕(4𝛼2)√
𝜋𝑘 

𝜀 . (80)

Substituting Eq. (79) into Eq. (78) and using the DH approximation, one gets

|||ℰ𝒌
𝑈𝓁 ,SOE

||| ≤ 2
√

𝜋𝜆2
𝐷
𝛼𝑄

𝐿𝑥𝐿𝑦

𝑒−𝑘2∕(4𝛼2)

𝑘2
𝜀 . (81)

To adequately consider the error in Fourier space, the thermodynamic limit is commonly considered [37,65], wherein the sum over 
wave vectors is replaced by an integral over 𝒌:
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∑
𝒌≠𝟎

≈
𝐿𝑥𝐿𝑦

(2𝜋)2

∞ 

∫
2𝜋
𝐿 

𝑘𝑑𝑘

2𝜋

∫
0 

𝑑𝜃 , (82)

where (𝑘, 𝜃) are the polar coordinates and 𝐿 =max{𝐿𝑥,𝐿𝑦}. It then follows that

∑
𝒌≠𝟎

ℰ𝒌
𝑈𝓁 ,SOE

≤ 2𝜆2
𝐷
𝛼3𝑄√
𝜋

𝜀 . (83)

Finally, recalling the SOE approximation errors of erf (⋅) and Gaussian functions given by Eqs. (63) and (48), one obtains

|||ℰ𝟎
𝑈𝓁 ,SOE

||| ≤
√

𝜋𝜆2
𝐷
(1 + 2𝛼2𝐿𝑧)𝑄
𝛼𝐿𝑥𝐿𝑦

𝜀 . (84)

This finishes the proof. □

Based on Proposition 2.6 and Theorem 3.5, we conclude that the overall absolute error in 𝑈 scales as ℰ𝑈 ∼ O(𝜀𝑁). Notably, for 
systems sharing the same charge distribution, the Coulomb interaction energy 𝑈 ∼ O(𝑁). Thus we anticipate that our method will 
maintain a fixed relative error in 𝑈 . This will be verfied through numerical tests in Section 5.1.

3.4. Complexity analysis for the SOEwald2D

In this section, we analyze the complexity of the SOEwald2D method summarized in Algorithm 1. The main computational cost 
is contributed by the following steps: 𝑁 particle sorting in 𝑧, the real and reciprocal space summations. For sorting (Step 4 in 
Algorithm 1), taking advantage of the quasi-2D cofinement, various sorting algorithms are suitable, for example, the bucket sorting 
algorithm [66] results in an O(𝑁) complexity. To achieve an optimal complexity, the cost of the real and reciprocal space summations 
(Steps 5 and 6) need to be balanced. To analyze it, we first dfine 𝜌𝑠 and 𝜌𝓁 by the average densities in the real and Fourier spaces

𝜌𝑠 =
𝑁

𝐿𝑥𝐿𝑦𝐿𝑧

, and 𝜌𝓁 =
𝐿𝑥𝐿𝑦

(2𝜋)2
, (85)

respectively. The cost 𝐶𝑠 for computing the short-range interaction 𝑈𝑠 scales as

𝐶𝑠 =
4𝜋
3 

𝑟3𝑐 𝜌𝑠𝑁 = 4𝜋𝑠3𝑁2

3𝛼3𝐿𝑥𝐿𝑦𝐿𝑧

. (86)

Meanwhile, the total cost 𝐶𝓁 in computing 𝑈𝒌
𝓁,SOE

for all 0 < |𝒌| ≤ 𝑘𝑐 and 𝑈𝟎
𝓁,SOE

is given by

𝐶𝓁 = 𝜋𝑘2𝑐 𝜌𝓁𝑀𝑁 = 1 
𝜋
𝑠2𝛼2𝐿𝑥𝐿𝑦𝑀𝑁 (87)

since the recursive computation requires O(𝑀𝑁) operations for each 𝒌. To balance 𝐶𝑠 and 𝐶𝓁 , one takes

𝛼 ∼ 𝑁1∕5

𝐿
2∕5
𝑥 𝐿

2∕5
𝑦 𝐿

1∕5
𝑧

, (88)

leading to the optimal complexity

𝐶𝑠 = 𝐶𝓁 ∼ O(𝑁7∕5) . (89)

The self interaction 𝑈self (Step 7) can be directly calculated with a complexity of O(𝑁), and cost of summing up the total energy 
(Step 8) is clearly O(1). By taking into consideration that the force calculation (Step 9) requires asymptotically the same cost as the 
energy calculation (Steps 4-8), it can be concluded that the overall computational complexity of the SOEwald2D algorithm is O(𝑁7∕5). 
It is clearly much faster than the original Ewald2D method which scales as O(𝑁2); and surprisingly, it is even slightly faster than 
Ewald3D for fully-periodic systems, which scales as O(𝑁3∕2).

Remark 3.6. For the extreme case, 𝐿𝑧 ≪min{𝐿𝑥,𝐿𝑦}, the neighboring region for the short-range interaction reduces to a cylinder 
with radius 𝑟𝑐 due to the strong cofinement, rather than a spherical region. In this case, one has:

𝐶𝑠 ∼ 2𝜋𝑟2𝑐
𝑁

𝐿𝑥𝐿𝑦

𝑁 = 2𝜋𝑠2𝑁2

𝛼2𝐿𝑥𝐿𝑦𝐿𝑧

. (90)

By simple calculation, the optimal complexity is found to be O(𝑁3∕2), which is the same as that of the Ewald3D summation for 
fully-periodic problems.
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4. Random batch SOEwald2D method

In this section, we will introduce a stochastic algorithm designed to accelerate the SOEwald2D method in particle simulations, 
reducing the complexity to O(𝑁). Unlike existing methods relying on either FFT or FMM-based techniques to reduce the complexity, 
our idea involves adopting mini-batch stochastic approximation over Fourier modes, with importance sampling for variance reduction. 
More precisely, let us consider the Fourier sum over 𝒌 ∈ K2 for a given kernel 𝑓 (𝒌), one can alternatively understand the Fourier 
sum as an expectation

𝜇 ∶=
∑
𝒌∈K2

𝑓 (𝒌)
ℎ(𝒌) 

ℎ(𝒌) = 𝔼𝒌∼ℎ(𝒌)

[
𝑓 (𝒌)
ℎ(𝒌) 

]
, (91)

where 𝔼𝒌∼ℎ(𝒌) denotes the expectation with 𝒌 sampled from a chosen probability measure ℎ(𝒌) dfined on the lattice 𝒌 ∈K2. Instead 
of calculating the summation directly or using FFT, a mini-batch of Fourier modes (with batch size 𝑃 ) sampled from ℎ(𝒌) are employed 
to estimate the expectation, resulting in an efficient stochastic algorithm.

It is worth noting that the random mini-batch strategy originated from stochastic gradient descent [67] in machine learning and 
was first introduced in the study of interacting particle systems by Jin, et al. [68], called the random batch method (RBM). The 
method was proved to be successful in various areas, including nonconvex optimization [69], Monte Carlo simulations [70], optimal 
control [71], and quantum simulations [72]. Recently, this idea has been applied to fully-periodic Lennard-Jones and Coulomb 
systems [40,73,74], demonstrating superscalability in large-scale simulations [75--77]. For long-range interactions such as Coulomb, 
to accurately reproduce the long-range electrostatic correlations, the so-called symmetry-preserving mea-field (SPMF) condition [78] 
has been proposed. The SPMF is originated from the local molecular field theory for Coulomb systems [79,80], which states that 
algorithms must share a mea-field property, that is the averaged integration for the computed potential over certain directions 
should equal that of the exact 1∕𝑟 Coulomb potential. For fully-periodic systems, by carefully imposing the SPMF in the random 
batch approximation, it has been shown that the long-range electrostatic correlations can be accurately captured [81].

However, when formulating algorithms for quasi-2D systems, the direct application of the random mini-batch idea introduces 
formidable challenges. The classical Ewald2D, either in the closed form (Eq. (24)) or the integral form (Eq. (B.3)), are unsuitable 
for random batch sampling: (1) the closed form demands O(𝑁2) complexity even with batch size 𝑃 ∼ O(1); (2) the integral form is 
singular at 𝑘 = 𝜅 = 0, giving rise to significant variance. In this section, we will show that the idea of random mini-batch can now 
be easily incorporated into the SOEwald2D algorithm based on the reformulation of Ewald2D proposed in Section 3.2, resulting in 
the Random Batch SOEwald2D (RBSE2D) method, which can accurately satisfy the SPMF condition for quasi-2D geometry. Detailed 
analyses will also be provided.

4.1. The O(𝑁) stochastic algorithm

It has been shown in Eqs. (64), (65) and (66) that, after applying the SOE approximation to 𝑈𝒌
𝓁 , the Fourier space summation in 

the SOEwald2D can be compactly written as∑
𝒌≠𝟎

𝑈𝒌
𝓁,SOE

=
∑
𝒌≠𝟎

𝜑̃(𝒌) , (92)

where 𝜑̃(𝒌) is dfined as

𝜑̃(𝒌) ∶= 𝑒
− 𝑘2

4𝛼

[
2𝛼

√
𝜋

𝐿𝑥𝐿𝑦

𝑀∑
𝓁=1

𝑤𝑙

∑
1≤𝑗<𝑖≤𝑁 𝑞𝑖𝑞𝑗𝑒

i𝒌⋅𝝆𝑖𝑗
(
2𝛼𝑠𝑙𝑒−𝑘𝑧𝑖𝑗 − 2𝑘𝑒−𝛼𝑠𝑙𝑧𝑖𝑗

)
𝑘(𝛼2𝑠2

𝑙
− 𝑘2) 

]
. (93)

Comparing to the original Ewald2D formula given in Section 2.2, one finds a Gaussian decay factor explicitly, which can be normalized 
for the purpose of importance sampling. Thus, we take

ℎ(𝒌) ∶= 𝑒−𝑘2∕(4𝛼2)

𝐻
with 𝐻 ∶=

∑
𝒌≠𝟎

𝑒−𝑘2∕(4𝛼2) , (94)

where 𝐻 serves as a normalization factor. By the Poisson summation formula (see Lemma A.2), one has

𝐻 =
𝛼𝐿𝑥𝐿𝑦

𝜋

∑
𝑚𝑥,𝑚𝑦∈ℤ

𝑒
−𝛼(𝑚2

𝑥𝐿
2
𝑥+𝑚2

𝑦𝐿
2
𝑦) − 1 , (95)

where 𝑚𝜉 = 𝐿𝜉𝑘𝜉∕2𝜋 with 𝜉 ∈ {𝑥, 𝑦}. The computation of 𝐻 is cheap, since Eq. (95) can be simply truncated to obtain a good 
approximation. Generally speaking, 𝑚𝜉 = ±2 is enough since 𝛼𝐿𝜉 ≫ 1. Then using the Metropolis algorithm [82,83] (see Appendix G), 
a random mini-batch of frequencies {𝒌𝜂}𝑃𝜂=1 is sampled, and the Fourier component of energy can be approximated as:

∑
𝒌≠𝟎

𝑈𝒌
𝓁,SOE

≈𝑈𝒌≠𝟎
𝓁,∗ ∶= 𝐻

𝑃

𝑃∑
𝜂=1 

𝜑̃RB(𝒌𝜂) (96)

where 𝜑̃RB(𝒌) satifies

Journal of Computational Physics 524 (2025) 113733 

15 



Z. Gan, X. Gao, J. Liang et al. 

𝜑̃RB(𝒌)𝑒−
𝑘2
4𝛼 = 𝜑̃(𝒌) , (97)

and the corresponding estimator of the force in Fourier space is given by

∑
𝒌≠𝟎

𝑭
𝒌,𝑖

𝓁,SOE
≈ 𝑭𝒌≠𝟎,𝑖𝓁,∗ = −𝐻

𝑃

𝑃∑
𝜂=1 

∇𝒓𝑖 𝜑̃
RB(𝒌𝜂) . (98)

Each 𝜑̃RB(𝒌) and ∇𝒓𝑖 𝜑̃
RB(𝒌) are pairwise summations, fit into the general form of Eq. (69), and can be efficiently computed using the 

recursive procedure outlined in Eqs. (71)-(73). Due to the use of importance sampling, it is ensured that the aforementioned random 
estimators are unbiased and have reduced variances, which will be proven in Section 4.2. It is also worth noting that (1) the 𝒌 = 𝟎
mode is excluded in the stochastic approximation and is always computed in an actual MD simulation. Since the averaged potential 
for the 𝟎th mode over the 𝑥𝑦-plane equal to that of the exact 1∕𝑟 potential, the SPMF condition [78] is satified (only up to an O(𝜀)
SOE approximation error); (2) for the 𝒌 ≠ 𝟎 modes, random batch sampling is adopted, and it will be justfied that 𝑃 can be chosen 
independent of 𝑁 ; typically, one can choose 𝑃 ∼ O(1).

In an actual MD simulation, one will utilize these unbiased estimators along with an appropriate heat bath to complete the particle 
evolution. Except for the summation over Fourier modes 𝒌, the methods of the RBSE2D for other components of both energy and 
force are the same as those in the SOEwald2D, and the algorithm is outlined in Algorithm 2.

We now analyze the complexity of the RBSE2D method per time step. Similar to the strategy in some FFT-based solvers [65,11], 
one may choose 𝛼 such that the time cost in real space is cheap and the computation in the Fourier space is accelerated. More 
precisely, one chooses

𝛼 ∼ 𝑁1∕3

𝐿
1∕3
𝑥 𝐿

1∕3
𝑦 𝐿

1∕3
𝑧

(99)

so that the complexity for the real space part is 𝐶𝑠 ∼ O(𝑁). By using the random batch approximation Eq. (96), the number of 
frequencies to be considered is then reduced to O(𝑃 ) per step, and the complexity for the Fourier part is O(𝑃𝑁), even for the 
challenging cases where the system is ultra-thin, i.e., 𝐿𝑧 ≪min{𝐿𝑥,𝐿𝑦}. These imply that the RBSE2D method has linear complexity 
per time step if one chooses 𝑃 ∼ O(1), then by selecting 𝛼 according to Eq. (99), the overall complexity of the RBSE2D is O(𝑁) for 
all quasi-2D system setups.

Algorithm 2 The random batch sum-of-exponentials Ewald2D method.

1: Input: Initialize the size of the simulation box (𝐿𝑥,𝐿𝑦,𝐿𝑧), as well as the positions, velocities, and charges of all particles. Choose a precision requirement 𝜀 as 
well as batch size 𝑃 .

2: Precomputation: Determine Ewald splitting parameters 𝛼 and 𝑠 according to Eqs. (99) and (34), respectively. Generate real space cutoff by 𝑟𝑐 = 𝑠∕𝛼. Construct 
the SOE approximation of 𝜉±(𝑘, 𝑧) and erf(𝛼𝑧) following Section 3.1.

3: procedure (RBSE2D)

4: Draw 𝑃 frequencies {𝒌𝜂}𝑃𝜂=1 using the Metropolis algorithm;

5: Sort all the particles according to their 𝑧 coordinates, such that 𝑧1 < 𝑧2 <⋯ < 𝑧𝑁 ;

6: Compute unbiased Fourier space energy 𝑈𝒌≠𝟎,∗
𝓁 by importance sampling Eq. (96);

7: Compute SOE-approximated zero-frequency part 𝑈 𝟎
𝓁,SOE

according to Section 3.2.

8: Compute 𝑈self and 𝑈p-s via Eqs. (22) and (45), respectively.

9: Compute 𝑈𝑠 by direct truncation in real space via Eq. (19) with cutoff 𝑟𝑐 .
10: Compute 𝑈 ∗ =𝑈𝒌≠𝟎,∗

𝓁 +𝑈 𝟎
𝓁,SOE

−𝑈self +𝑈𝑠 +𝑈p-s .

11: Compute forces 𝑭 ∗
𝑖

via a similar procedure as that of 𝑈 ∗ .

12: end procedure

13: Output: Unbiased electrostatic energy 𝑈 ∗ and forces 𝑭 ∗
𝑖
.

4.2. Consistency and variance analysis

In this section, we provide theoretical analysis for the RBSE2D method. We start with considering the fluctuations, i.e., the 
stochastic error introduced by the importance sampling at each time step. The fluctuations for the Fourier space components of the 
energy and the force acting on the 𝑖th particle are dfined as follows:

Ξ ∶=
∑
𝒌≠𝟎

(
𝑈𝒌
𝓁 −𝑈𝒌

𝓁,∗

)
, and 𝝌 𝑖 ∶=

∑
𝒌≠𝟎

(
𝑭
𝒌,𝑖

𝓁 − 𝑭𝒌,𝑖𝓁,∗

)
. (100)

Proposition 4.1 is obtained directly by the definition of the importance sampling:

Proposition 4.1. 𝑈𝒌≠𝟎
𝓁,∗ and 𝑭𝒌≠𝟎,𝑖𝓁,∗ are unbiased estimators, i.e. 𝔼Ξ= 0, 𝔼𝝌 𝑖 = 𝟎, and their variances can be expressed by

𝔼Ξ2 = 𝐻

𝑃

∑
𝒌1≠0

𝑒−𝑘21∕(4𝛼
2)
||||||𝜑̃RB(𝒌1) −

1 
𝐻

∑
𝒌2≠0

𝜑̃RB(𝒌2)𝑒
−𝑘22∕(4𝛼

2)
||||||
2

(101)

and
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𝔼|𝝌 𝑖|2 = 𝐻

𝑃

∑
𝒌1≠0

𝑒−𝑘21∕(4𝛼
2)
||||||∇𝒓𝑖 𝜑̃RB(𝒌1) −

1 
𝐻

∑
𝒌2≠0

∇𝒓𝑖 𝜑̃
RB(𝒌2)𝑒

−𝑘22∕(4𝛼
2)
||||||
2

. (102)

Furthermore, under the Debye-Hückel approximation, one has the following Lemma 4.2 for the upper bounds of random batch 
approximations.

Lemma 4.2. Under the assumption of the DH theory, |𝜑̃RB(𝒌)| and |∇𝒓𝑖 𝜑̃RB(𝒌)| have upper bounds

|||𝜑̃RB(𝒌)||| ≤ 2
√

𝜋𝜆2
𝐷
𝑄

𝐿𝑥𝐿𝑦𝑘 

(√
𝜋 + 𝛼𝜀

𝑘 

)
, |||∇𝒓𝑖 𝜑̃RB(𝒌)||| ≤ 𝜋𝜆2

𝐷
𝑞2
𝑖

𝐿𝑥𝐿𝑦

[
3 + 𝛼√

𝜋

(
1 +

2
√
2𝜀

𝑘 

)]
, (103)

where 𝜆𝐷 represents the Debye length.

Proof. By the definition of 𝜑̃RB(𝒌), one has|||𝜑̃RB(𝒌)||| ≤ 1 
𝑒−𝑘2∕(4𝛼2)

(|||𝑈𝒌
𝓁,SOE

−𝑈𝒌
𝓁
|||+ |||𝑈𝒌

𝓁
|||) . (104)

An estimation for the first term is given in Theorem 3.5. To estimate the second term, one may write Eq. (64) as

𝑈𝒌
𝓁 = 𝜋

2𝐿𝑥𝐿𝑦

𝑁∑
𝑖,𝑗=1

𝑞𝑖𝑞𝑗
𝑒i𝒌⋅𝝆𝑖𝑗

𝑘 
[
𝜉+(𝑘, 𝑧𝑖𝑗 ) + 𝜉−(𝑘, 𝑧𝑖𝑗 )

]
. (105)

Then using the integral representation of 𝜉± Eq. (51), one obtains the following estimate

𝑒
𝑘2

4𝛼2
[
𝜉+(𝑘, 𝑧) + 𝜉−(𝑘, 𝑧)

]
= 2𝛼√

𝜋

⎛⎜⎜⎝𝑒𝑘𝑧
∞ 

∫
𝑧 

𝑒−𝛼2𝑡2−𝑘𝑡𝑑𝑡+ 𝑒−𝑘𝑧

∞ 

∫
−𝑧 

𝑒−𝛼2𝑡2−𝑘𝑡𝑑𝑡

⎞⎟⎟⎠
≤ 4𝛼√

𝜋

∞ 

∫
−∞

𝑒−𝛼2𝑡2𝑑𝑡 = 4 .

(106)

By employing the DH approximation, one has

|||𝜑̃RB(𝒌)||| ≤ 2
√

𝜋𝜆2
𝐷
𝑄

𝐿𝑥𝐿𝑦𝑘 

(√
𝜋 + 𝛼𝜀

𝑘 

)
. (107)

Similarly, by taking 𝑧-derivative of the integral form of 𝜉± , the following estimate holds:

𝑒
𝑘2

4𝛼2 𝜕𝑧
[
𝜉+(𝑘, 𝑧) + 𝜉−(𝑘, 𝑧)

]
= 2𝛼√

𝜋
𝜕𝑧

⎛⎜⎜⎝𝑒±𝑘𝑧

∞ 

∫
±𝑧 

𝑒−𝛼2𝑡2−𝑘𝑡𝑑𝑡

⎞⎟⎟⎠
≤ 2𝛼√

𝜋
𝑘

⎛⎜⎜⎝𝑒±𝑘𝑧

∞ 

∫
−∞

𝑒−𝛼2𝑡2−𝑘𝑡𝑑𝑡+ 𝑒−𝛼2𝑧2
⎞⎟⎟⎠

≤
(
2 + 2𝛼√

𝜋

)
𝑘 .

(108)

Combining Lemma E.1 with Eq. (108) and using the DH approximation again give|||∇𝒓𝑖 𝜑̃RB(𝒌)||| ≤ 1 
𝑒−𝑘2∕(4𝛼2)

(|||∇𝒓𝑖𝑈𝒌
𝓁,SOE

−∇𝒓𝑖𝑈
𝒌
𝓁
|||+ |||∇𝒓𝑖𝑈𝒌

𝓁
|||)

≤ 𝜋𝜆2
𝐷
𝑞2
𝑖

𝐿𝑥𝐿𝑦

[
3 + 𝛼√

𝜋

(
1 +

2
√
2𝜀

𝑘 

)]
. □

(109)

Finally, by Lemma 4.2, one has the following Theorem 4.3 for the boundness and convergence in the fluctuations originated from 
the random batch approximation.

Theorem 4.3. Under the assumption of the DH theory, further assume that the SOE approximation error 𝜀≪ 1. Then the variances of the 
estimators of energy and forces have closed upper bounds

𝔼Ξ2 ≤ 𝐻

𝑃

16𝜋3∕2𝜆4
𝐷
𝛼𝑄2

𝐿𝑥𝐿𝑦

, 𝔼|𝝌 𝑖|2 ≤ 𝐻

𝑃

4
√

𝜋𝛼3(3
√

𝜋 + 𝛼)𝜆4
𝐷
𝑞4
𝑖

𝐿𝑥𝐿𝑦

. (110)
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Proof. By Proposition 4.1 and the definition of normalization factor 𝐻 , one has

𝔼Ξ2 = 1 
𝑃

∑
𝒌1≠𝟎

∑
𝒌2≠𝟎

𝑒−(𝑘
2
1+𝑘22)∕(4𝛼

2) [𝜑̃RB(𝒌1) − 𝜑̃RB(𝒌2)
]2

= 2 
𝑃

∑
𝒌1≠𝟎

∑
𝒌2≠𝟎

𝑒−(𝑘
2
1+𝑘22)∕(4𝛼

2)𝜑̃RB(𝒌1)2 −
2 
𝑃

[∑
𝒌≠𝟎

𝑒−𝑘2∕(4𝛼2)𝜑̃RB(𝒌)

]2

≤ 2𝐻
𝑃

∑
𝒌≠𝟎

𝑒−𝑘2∕(4𝛼2) |||𝜑̃RB(𝒌)|||2 .

(111)

Then by using the upper bound of ||𝜑̃RB(𝒌)|| given in Lemma 4.2, one has

𝔼Ξ2 ≤ 2𝜆4
𝐷
𝑄2𝐻

𝜋𝑃𝐿𝑥𝐿𝑦

∞ 

∫
2𝜋
𝐿 

𝑒−𝑘2∕(4𝛼2)

𝑘2

(√
𝜋 + 𝛼𝜀

𝑘 

)2
4𝜋𝑘2𝑑𝑘

≤ 𝐻

𝑃

16𝜋3∕2𝜆4
𝐷
𝛼𝑄2

𝐿𝑥𝐿𝑦

,

(112)

where the O(𝜀) and O(𝜀2) terms are omitted. Analogously, the variance of force can be estimated by

𝔼|𝝌 𝑖|2 ≤ 2𝐻
𝑃

∑
𝒌≠𝟎

𝑒−𝑘2∕(4𝛼2) |||∇𝒓𝑖 𝜑̃RB(𝒌)|||2
≤ 𝜆4

𝐷
𝐻𝑞4

𝑖

2𝑃𝐿𝑥𝐿𝑦

∞ 

∫
2𝜋
𝐿 

𝑒−𝑘2∕(4𝛼2)

[
3 + 𝛼√

𝜋

(
1 +

2
√
2𝜀

𝑘 

)]2

4𝜋𝑘2𝑑𝑘

≤ 𝐻

𝑃

4
√

𝜋𝛼3(3
√

𝜋 + 𝛼)𝜆4
𝐷
𝑞4
𝑖

𝐿𝑥𝐿𝑦

.

(113)

Finally, by definition Eq. (94), 𝐻 has the following estimate:

𝐻 =
∑
𝒌≠𝟎

𝑒−𝑘2∕(4𝛼2) ≤ 𝐿𝑥𝐿𝑦

(2𝜋)2

∞ 

∫
2𝜋
𝐿 

𝑒−𝑘2∕(4𝛼2)4𝜋𝑘2𝑑𝑘 ≤ 2𝛼2𝐿𝑥𝐿𝑦√
𝜋

. (114)

Substituting Eq. (114) into Eq. (113) gives 𝔼|𝝌 𝑖|2 = O(1∕𝑃 ), and Eq. (113) clearly shows the independence of the estimate on the 
particle number 𝑁 . □

Theorem 4.3 has demonstrated that the variance of force scales as O(1∕𝑃 ), unaffected by the growth of the system size 𝑁 , provided 
the same particle density 𝜌𝑠 or Debye length 𝜆𝐷 . This is crucial for its practical usage in MD simulations, where the dynamical evolution 
typically relies on force calculations rather than energy. In the next section, analyses for the strong convergence of the random batch 
MD will be discussed, which further supports this observation.

4.3. Strong convergence

In this section, the convergence of the random batch accelerated MD method, the RBSE2D, will be discussed based on the conclu

sions given in Section 4.2.

One first introduces some additional notations. Let Δ𝑡 be the discretized time step, and 𝒓𝑖, 𝑚𝑖, and 𝒑𝑖 represent the position, 
mass, and momentum of the 𝑖th particle, respectively. In each time step of the simulation, the forces (energies) are computed, and the 
dynamics are subsequently evolved. For ease of discussion, let’s consider the commonly used NVT ensemble. A thermostat is employed 
to regulate the system’s temperature, ensuring that we sample from the correct distribution. Here, one considers the dynamics with 
Langevin thermostat [2]:

𝑑𝒓𝑖 =
𝒑𝑖

𝑚𝑖

𝑑𝑡 ,

𝑑𝒑𝑖 =
[
𝑭 𝑖 − 𝛾

𝒑𝑖

𝑚𝑖

]
𝑑𝑡+

√
2𝛾
𝛽

𝑑𝑾 𝑖 ,

(115)

where 𝑾 𝑖 are i.i.d. Wiener processes, 𝛾 is the reciprocal characteristic time associated with the thermostat. Let (𝒓∗
𝑖
,𝒑∗

𝑖
) be the phase 

space trajectory to Eq. (115), where the exact force 𝑭 𝑖 is replaced by the random batch approximated stochastic force 𝑭 ∗
𝑖 = 𝑭 𝑖 −𝝌 𝑖. 

We further suppose that masses 𝑚𝑖 for all 𝑖 are uniformly bounded. With these notations, the following theorem is introduced.
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Theorem 4.4. (Strong Convergence) Suppose for ∀𝑖, the force 𝑭 𝑖 is bounded and Lipschitz and 𝔼𝝌 𝑖 = 𝟎. Under the synchronization coupling 
assumption that the same initial values as well as the same Wiener process 𝑾 𝑖 are used, then for any 𝑇 > 0, there exists 𝐶(𝑇 )> 0 such that

sup 
𝑡∈[0,𝑇 ]

(
𝔼

[
1 
𝑁

𝑁∑
𝑖=1 

(||𝒓𝑖 − 𝒓∗𝑖 ||2 + ||𝒑𝑖 − 𝒑∗𝑖 ||2)
])1∕2

≤ 𝐶(𝑇 )
√
Λ(𝑁)Δ𝑡 , (116)

where Λ(𝑁) = ‖𝔼 ||𝝌 𝑖
||2 ‖∞ is the upper bound for the variance in the random batch approximated force. In the Debye-Hückel regime, Λ(𝑁)

is independent of 𝑁 (see Theorem 4.3).

The proof of Theorem 4.4 is based on previous work [84,85] for the original random batch method [68]. However, it should 
be noted that this theorem may fail to be applied to the RBSE2D method due to the singularity of Coulomb kernel at the origin, 
which violates the required Lipschitz continuity and boundness conditions. Additionally, one may concern that the errors introduced 
by the SOE approximation and Ewald decomposition might disrupt the convergence of the method. Rigorous justfication of the 
convergence could still be very challenging and remains open. Nevertheless, we argue that Theorem 4.4 may still hold in practice 
for several reasons: (1) the Lennard-Jones (LJ) potential, commonly used in molecular dynamics simulations, models strong short

range repulsion between particles, which may mitigate the effect of the singularity of Coulomb kernel; (2) the significant variance 
reduction achieved through the importance sampling technique; and (3) the errors introduced by the Ewald decomposition and SOE 
approximations can be effectively controlled according to the error estimates. Finally, numerical results presented in Section 5 also 
validate the effectiveness of random batch method in capturing finite-time structures and dynamic properties, which aligns with the 
conclusions of Theorem 4.4.

The introduced stochastic errors tend to cancel out over time due to the consistent force approximation. This ``law of large numbers'' 
effect enables the random batch method to perform well in dynamical simulations, despite its single-step error not being as accurate 
as other deterministic methods. For long-time simulations, a uniform-in-time error estimate has been established for the RBM [86], 
under some stronger force regularity assumptions and suitable contraction conditions. We anticipate that this result will also apply to 
our RBSE2D method for the reasons mentioned above; however, providing a rigorous justfication remains challenging and an open 
question.

4.4. Further discussions

In this section, further discussions about using the RBSE2D method for MD simulations under other thermostats and ensembles 
are provided.

In practice, the Nosé-Hoover (NH) thermostat [87] is often adopted for the heat bath, instead of the Langevin thermostat. The 
rigorous proof for the convergence of random batch approximated dynamics with the NH thermostat remains open, whereas we expect 
Theorem 4.4 still holds. This is because the damping factor introduced in the NH allows adaptively dissipating artficial heat [88], 
while preserving ergodicity and maintaining the desired Gibbs distribution under the NVT ensemble [89].

An interesting topic is whether the RBSE2D preserves the geometric ergodicity, which is crucial for assessing how quickly the 
distribution converges to the invariant distribution. In a recent paper [90], the authors prove the ergodicity of random batch inter

acting particle systems for overdamped Langevin dynamics with smooth interacting potentials. Though the singularity of Coulomb 
potential may not be actually reached during the RBSE2D-based MD simulations, a rigorous justfication of ergodicity remains a very 
challenging problem, which will be left open for future explorations.

In line with discussions in [91], the RBSE2D-accelerated Langevin and NH dynamics can be extended to the NPT ensemble by 
incorporating the approximation of the virial tensor. Other well-known integrators, such as Berendsen [92] and Martyna-Tuckerman

Tobias-Klein [93], are also compatible with the RBSE2D. However, extending the RBSE2D to the NVE ensemble poses extra challenge 
since the Hamiltonian system is disrupted by the random batch sampling, which can be resolved by a modfied Newtonian dynam

ics [94]:

𝑑𝒓𝑖 =
𝒑𝑖

𝑚𝑖

𝑑𝑡 , 𝑑𝒑𝑖 =
[
𝑭 𝑖 − 𝝌 𝑖

]
𝑑𝑡 ,

𝑑𝐾 = 1 
𝛾

[
H0 −H +Ξ

]
𝑑𝑡 .

(117)

Here, Ξ and 𝝌 𝑖 represent the fluctuations of energy and force, as dfined in Eq. (100). 𝐾 =
∑|𝒑𝑖|2∕2𝑚𝑖 denotes the instantaneous 

kinetic energy, and H0 and H represent the Hamiltonian at the initial and current time steps, respectively. The parameter 𝛾 represents 
the relaxation time, determining the interval between successive dissipations of artficial heat within the system. An optimal choice 
for 𝛾 typically falls in the range of 10 ∼ 100Δ𝑡. It is worth noting that the distributions obtained using Eq. (117) have a small deviation 
of O(Δ𝑡2∕𝑃 ) compared to the correct NVE ensemble [94].

Finally, we discuss the parameter selection for the RBSE2D method. The accuracy is ifluenced by three key parameters: the 
parameter 𝑠, which controls the truncation error of the Ewald summation; the number of exponentials 𝑀 in the SOE, which governs 
the SOE approximation error; and the batch size 𝑃 , which affects the variance of the random batch approximation. For a prescribed 
tolerance 𝜀, 𝑠 and 𝑀 can be determined using Eq. (34) and the convergence rate of the SOE method [60], respectively. One can 
pick the proper 𝑠 and 𝑀 to ensure that errors from these two components are both at the 𝑂(𝜀) level. The determination of optimal 
batch size 𝑃 is system-dependent, relies on performing some numerical tests. Notably, it is empirically observed that a small 𝑃 is 
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Fig. 2. Accuracy in the electrostatic energy by the SOEwald2D method. (a): absolute error as a function of 𝑠; (b): relative error as a function of total number of ions 
𝑁 with fixed ion density 𝜌𝑠 . Results with different number of exponentials 𝑀 are considered.

sufficient, thanks to the importance sampling strategy for variance reduction. Numerical results in Section 5.2 show that choosing 
𝑃 = 100 is adequate for coarse-grained electrolytes. Regarding the computational complexity, by substituting Eq. (99) into Eqs. (86)

and (87), one finds that the computational cost of the RBSE2D algorithm for the nea-field grows cubically with 𝑠; while the cost for 
the fa-field grows linearly with 𝑀 and 𝑃 , and quadratically with 𝑠.

5. Numerical results

In this section, numerical results are presented to verify the accuracy and efficiency of the proposed methods. The accuracy 
of the SOEwald2D method is first assessed by comparing it with the original Ewald2D summation. This analysis demonstrates the 
convergence properties of the SOEwald2D method and its ability to maintain a uniformly controlled error bound. Subsequently, we 
employ both the SOEwald2D and RBSE2D methods in MD simulations for three prototypical systems. These systems include 1 ∶ 1
electrolytes cofined by charge-neutral or charged slabs, as well as simulations of cation-only solvent cofined by negatively charged 
slabs. Finally, the CPU performance of the proposed methods is presented. All these calculations demonstrate the attractive features 
of the new methods.

5.1. Accuracy of the SOEwald2D method

In order to verify the convergence of the SOEwald2D method discussed in Section 3.3, one considers a system with equal di

mensions of 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 100, containing randomly distributed 50 cations and 50 anions with strengths 𝑞 = ±1, and cofined by 
neutral slabs. The original Ewald2D summation (outlined in Section 2.2) serves as a reference method. The Ewald splitting parameter 
𝛼 is fixed as 0.1 for both the SOEwald2D and Ewald2D, and the cutoffs 𝑟𝑐 and 𝑘𝑐 are determined by Eq. (33).

The absolute error in electrostatic energy as a function of 𝑠 is calculated. The results are presented in Fig. 2(a) for different 
number of exponentials in the SOE. Specifically, 𝑀 = 4, 8 and 16 correspond to SOE approximation errors 𝜀 = 10−4, 10−8, and 10−14, 
respectively. The convergence behavior depicted in Fig. 2(a) is consistent with our theoretical findings, demonstrating both a decaying 
rate of 𝑂(𝑒−𝑠2∕𝑠2) and a saturated precision of 𝑂(𝜀) for the SOEwald2D method. We also investigate how the relative error in energy 
varies as the system size scales, while keeping the density 𝜌𝑠 constant. The results presented in Fig. 2(b) reveal that the error is nearly 
unaffected by the size of the system, which aligns with the analysis presented in Section 3.3.

As discussed at the end of Section 2.2, one notable drawback of the original Ewald2D method is the occurrence of catastrophic 
error cancellation when the size of the non-periodic dimension increases. To quantify this effect, one shall study the absolute error 
in electrostatic energy as a function of 𝐿𝑧 . The Ewald2D truncation parameter 𝑠 = 3,4,5 are chosen for 𝑀 = 4,8,16, respectively, 
to obtain optimal accuracy as is guided by Fig. 2 (a). The system consists of 100 uniformly distributed particles, with dimensions 
𝐿𝑥 =𝐿𝑦 = 100 along the periodic dimensions, and the Ewald parameter is set to be 𝛼 = 0.1. A double-precision floating-point (FP64) 
arithmetic for both the Ewald2D and SOEwald2D methods is employed, while the reference solution is obtained using the Ewald2D 
with a quadruple-precision floating-point (FP128) arithmetic, ensuring a sufficient number of significant digits. The results presented 
in Fig. 3 clearly illustrate that the error of the Ewald2D method increases rapidly with 𝐿𝑧 . In contrast, the error of the SOEwald2D 
method remains independent of 𝐿𝑧 for various values of 𝑠 and 𝑀 , thanks to its stable and well-conditioned summation procedure.

For many existing methods, the accurate evaluation of the forces exert on particles can be strongly ifluenced by the particle’s 
location in 𝑧. Due to the uniform convergence of SOE approximation, our method does not suffer from this issue, which is illustrated 
by two commonly employed examples that have been extensively studied in literature [11,95]. In the first example, one considers a 
system consisting of 50 anions and 50 cations arranged in a cubic geometry with a side length of 100, along with neutral slabs. The 
pointwise error of the force, represented as 

√
ℰ2

𝑥 +ℰ2
𝑦 +ℰ2

𝑧 , is calculated as a function of the particles’ 𝑧-coordinates. This evaluation 
is conducted for various (𝑠,𝑀) pairs, with the Ewald splitting parameter 𝛼 = 0.1. Fig. 4(a) clearly demonstrates that the pointwise 
error in force is independent with its relative position in 𝑧. In the second example, one considers a system of the same size but with 
two non-neutral slabs. The surface charge densities are set as 𝜎top = 𝜎bot = −0.005, and the system contains 100 monovalent cations 
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Fig. 3. The absolute error in electrostatic energy is evaluated for the SOEwald2D method using three sets of parameters, as well as for the Ewald2D method with 𝑠= 5, 
as a function of the system’s thickness 𝐿𝑧 .

Fig. 4. The absolute error in the pointwise electrostatic forces calculated using the SOEwald2D versus particles’ 𝑧-coordinates. Two different scenarios are considered: 
(a) uniformly distributed 50 anions and 50 cations and (b) uniformly distributed 100 cations with surface charge densities 𝜎top = 𝜎bot = −0.005.

such that the neutrality condition Eq. (35) is satified. Fig. 4(b) indicates that for such non-neutral slabs case, the pointwise error in 
forces calculated by the SOEwald2D method remains independent with 𝑧.

5.2. Accuracy of the RBSE2D method

In contrast to the deterministic SOEwald2D and Ewald2D methods, the RBSE2D employs unbiased stochastic approximations and 
its convergence should be investigated in the sense of ensemble averages, as has been carefully discussed in Sec. 4. Therefore, we 
conduct a series of MD simulations to validate the accuracy of the ensemble averaged equilibrium and dynamical quantities such as 
particles’ concentrations and mean-squared displacements (MSD) computed using the RBSE2D algorithm.

The first benchmark example is a coarse-grained MD simulation of 1 ∶ 1 electrolytes in the NVT ensemble. Following the primitive 
model [2], ions are represented as soft spheres with diameter 𝜎 and mass 𝑚, interacting through the Coulomb potential and a purely 
repulsive shifted-truncated Lennard Jones (LJ) potential. The LJ potential is given by

𝑈LJ(𝑟) =
⎧⎪⎨⎪⎩
4𝜖

[(
𝜎

𝑟 

)12
−
(
𝜎

𝑟 

)6
+ 1

4

]
, 𝑟 < 𝑟LJ ,

0 , 𝑟 ≥ 𝑟LJ ,

(118)

where 𝑟LJ = 21∕6𝜎 is the LJ cutoff, 𝜖 = 𝑘𝐵𝑇 is the coupling strength, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the external temperature. 
The simulation box has dimensions 𝐿𝑥 = 𝐿𝑦 = 100𝜎 and 𝐿𝑧 = 30𝜎, where the ions cofined within the central region by purely 
repulsive LJ walls located at 𝑧 = 0 and 𝑧 = 30𝜎 with 𝜖wall = 𝜖LJ and 𝜎wall = 0.5𝜎. The system contains 218 cations and anions, and 
both two walls are neutral. The simulation is performed with the time step Δ = 0.001𝜏 , where 𝜏 =

√
𝑚𝜎2∕𝜖LJ denotes the LJ unit of 

time. The temperature is maintained by using a Nosé-Hoover thermostat [2] with relaxation times 0.1𝜏 , fluctuating near the reduce 
external temperature 𝑇 = 1. The system is first equilibrated for 5 × 105 steps, and the production phase lasts another 1 × 107 steps. 
The cofigurations are recorded every 100 steps for statistics. Results produced by the SOEwald2D method with parameters 𝛼 = 0.1, 
𝑠 = 4, and 𝑀 = 8 serve as the reference solution, where 𝜀 ∼ 10−8.

The ion concentration along the 𝑧-direction is measured, and presented in Fig. 5. For the RBSE2D method, simulations with varying 
batch sizes 𝑃 are performed, while keeping other parameters fixed at 𝛼 = 0.3, 𝑠 = 4, and 𝑀 = 8. It is observed that the results for 
all choices of 𝑃 are in excellent agreement with those obtained using the accurate SOEwald2D method. Furthermore, one evaluates 
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Fig. 5. (a) The concentration of cations along 𝑧, with subplot indicating the convergence in the relative error of the average electrostatic energy as a function of batch 
size 𝑃 ; (b) and (c) the MSD prfiles in 𝑥𝑦 and 𝑧 against time for a 1 ∶ 1 electrolyte cofined by neutral slabs. Results by using different batch sizes 𝑃 = 20,30,60,120
are shown.

Fig. 6. Concentration of cations in 𝑧 for (a) a 1 ∶ 1 electrolyte cofined between two charged slabs and (b) a cations-only system cofined between two slabs, one of 
which is charged to neutralize the system.

the MSDs along both the periodic dimensions (Fig. 5(a)) and the non-periodic dimension (Fig. 5(b)), which describe the particles’ 
anisotropic dynamic properties across a wide range of time scales. The RBSE2D methods for all 𝑃 yield almost identical MSD results 
as the SOEwald2D method. The cofinement effect in 𝑧 leads to a 𝑀𝑆𝐷𝑧 prfile that clearly indicates a subdiffusion, while 𝑀𝑆𝐷𝑥𝑦

exhibits a normal diffusion process. Clearly, the RBSE2D method successfully captures this anisotropic collective phenomenon.

To assess the performance of our RBSE2D method for systems with non-neutral slabs, one studies a 1 ∶ 1 electrolyte containing 218
anions and 218 cations with 𝑞 = ±1, and with surface charge densities 𝜎bot = 0.0218 and 𝜎top = −0.0218. The simulation box is set to 
be 𝐿𝑥 =𝐿𝑦 = 100𝜎 and 𝐿𝑧 = 30𝜎. The resulting equilibrium concentration of cations is shown in Fig. 6(a), indicating that results of 
RBSE2D method with different batch sizes are in good agreement with that of the reference SOEwald2D method.

We further investigate the most challenging scenario for a system with free cations only, which are cofined by non-neutral slabs, 
so that boundary layers can form at the vicinity of the slabs. In particular, the system consists of 436 monovalent cations and is 
cofined by slabs with surface charge densities 𝜎bot = 0 and 𝜎top = −0.0436 to ensure overall charge neutrality. The concentration 
of free ions is depicted in Fig. 6(b), exhibiting excellent agreement with the results obtained using the SOEwald2D method. These 
findings indicate that choosing a small batch size 𝑃 ∼ O(1) is sufficient for generating accurate MD results by using the RBSE2D 
method.
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Fig. 7. The CPU time cost for the Ewald2D, SOEwald2D, and RBSE2D methods versus the number of particles 𝑁 , with fixed particle density 𝜌𝑠 . 

5.3. CPU performance

The CPU performance comparisons among the SOEwald2D, RBSE2D, and the original Ewald2D methods are conducted for MD 
simulations of 1 ∶ 1 electrolyte systems with varying system sizes. All calculations are performed on a Linux system equipped with an 
Intel Xeon Platinum 8358 CPU (2.6 GHz, 1 single core); and by using a self-developed package developed in Julia language. To ensure 
a fair comparison, we maintain the same accuracy across all methods. We fix 𝑠 = 4 and set 𝑀 = 8 for the SOE approximation, resulting 
in errors at ∼ 10−8 for both the Ewald2D and SoEwald2D methods. Subsequently, we set the batch size as 𝑃 = 120 for the RBSE2D 
method, with which the RBSE2D-based MD simulations achieve the same accuracy as the SOEwald2D method, as has been illustrated 
in the previous results. Finally, for each of the methods, the Ewald splitting parameter 𝛼 is always adjusted to achieve optimal 
efficiency. The CPU time comparison results are summarized in Fig. 7. It is evident that the CPU cost of the Ewald2D, SOEwald2D, 
and RBSE2D methods scale as O(𝑁2), O(𝑁7∕5), and O(𝑁), respectively, which is consistent with our complexity analysis. Remarkably, 
the RBSE2D method demonstrates a significant speedup of 3×103-fold compared to the Ewald2D for a system with 𝑁 = 104 particles, 
enabling large-scale MD simulations on a single core.

An additional observation is regarding the memory consumption and data input/output (I/O) on the maximum system size that 
can be simulated using the same computational resources. In Fig. 7, it is demonstrated that when utilizing a single CPU core, the 
Ewald2D and SOEwald2D methods are limited to simulating system sizes of up to about 3×104 and 3×105 particles, respectively. In 
contrast, the RBSOEwald method can handle systems containing about 5 × 106 particles. This is attributed to the reduced number of 
interacting neighbors that need to be stored in the RBSE2D algorithm, allowing a much smaller real space cutoff 𝑟𝑐 . This significant 
saving in memory consumption is achieved by the algorithm developed in this study, highlighting its potential as an effective algorithm 
framework for large-scale simulations of quasi-2D Coulomb systems.

6. Conclusions

We have proposed the random batch SOEwald2D (RBSE2D) method for MD simulations of doubly periodic systems cofined by 
charged slabs. The method utilizes Ewald splitting, and employs the SOE approximation in the non-periodic dimensions and the 
random batch importance sampling technique for efficient treatment of the Fourier sum in the periodic dimensions. Compared to the 
original Ewald2D summation, the RBSE2D avoids exponential blowup, and reduces the computational complexity from O(𝑁2) to O(𝑁)
as well as memory consumption. Extensive MD simulations are performed to demonstrate the excellent accuracy and performance of 
the RBSE2D method.

The SOEwald2D can be easily extended to handle other interaction kernels, such as dipolar crystals and Yukawa potentials [7,96], 
by utilizing kernel-independent SOE methods such as the VPMR [60]. Our future work will focus on incorporating such techniques into 
large scale numerical simulations involving long-range interaction kernels. We also aim to address the issue of dielectric mismatch, 
which is important in investigating the interfacial phenomena in electrodes and polyelectrolyte materials [97,98]. Additionally, we 
will explore CPU/GPU-based parallelization to further enhance our research.
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Appendix A. Fundamental results from Fourier analysis

In this appendix, we state several fundamental results from Fourier analysis for doubly periodic functions, associated with the 
Fourier transform pair dfined in Definition 2.3. These results are useful for us, and their proofs are well established and can be 
referenced in classical literature, such as in the work of Stein and Shakarchi [99].

Lemma A.1. (Convolution theorem) Let 𝑓 (𝝆, 𝑧) and 𝑔(𝝆, 𝑧) be two functions which are periodic in 𝝆 and non-periodic in 𝑧. Suppose that 𝑓
and 𝑔 have Fourier transform 𝑓 and 𝑔, respectively. Their convolution is dfined by

𝑢(𝝆, 𝑧) ∶= (𝑓 ∗ 𝑔)(𝝆, 𝑧) = ∫
R2

∫
ℝ 

𝑓 (𝝆− 𝝆′, 𝑧− 𝑧′)𝑔(𝝆′, 𝑧′)𝑑𝑧′𝑑𝝆′ , (A.1)

satisfying

𝑢̃(𝒌, 𝜅) = 𝑓 (𝒌, 𝜅)𝑔(𝒌, 𝜅) . (A.2)

Lemma A.2. (Poisson summation formula) Let 𝑓 (𝝆, 𝑧) be a function which is periodic in 𝝆 and non-periodic in 𝑧. Suppose that 𝑓 has Fourier 
transform 𝑓 and 𝒓= (𝝆, 𝑧). Then one has∑

𝒎∈ℤ2

𝑓 (𝒓+M) = 1 
2𝜋𝐿𝑥𝐿𝑦

∑
𝒌∈K2

∫
ℝ 

𝑓 (𝒌, 𝜅)𝑒i𝒌⋅𝝆𝑒i𝜅𝑧𝑑𝜅 . (A.3)

Lemma A.3. (Radially symmetric functions) Suppose that 𝑓 (𝜌, 𝑧) is periodic and radially symmetric in 𝝆, i.e., 𝑓 (𝝆, 𝑧) = 𝑓 (𝜌, 𝑧). Then its 
Fourier transform 𝑓 is also radially symmetric. Indeed, one has

𝑓 (𝜌, 𝑧) = 2𝜋

∞ 

∫
0 

𝐽0(𝑘𝜌)𝑓 (𝜌, 𝑧)𝜌𝑑𝜌 . (A.4)

Appendix B. Proof of Lemma 2.4

By applying the Fourier transform to Poisson’s equation

−Δ𝜙𝓁(𝝆, 𝑧) = 4𝜋𝑔(𝝆, 𝑧) ∗ 𝜏(𝝆, 𝑧) , (B.1)

one obtains

𝜙𝓁(𝒌, 𝜅) =
4𝜋

𝑘2 + 𝜅2 𝑔(𝒌, 𝜅)𝜏(𝒌, 𝜅) with 𝑔(𝒌, 𝜅) =
𝑁∑
𝑗=1 

𝑞𝑗𝑒
−i𝒌⋅𝝆𝑗 𝑒−i𝜅𝑧𝑗 (B.2)

via the convolution theorem and the Poisson summation formula (see Lemmas A.1 and A.2, respectively). Applying the inverse Fourier 
transform to Eq. (B.2) yields

𝜙𝓁(𝝆, 𝑧) =
2 

𝐿𝑥𝐿𝑦

𝑁∑
𝑗=1 

𝑞𝑗
∑
𝒌≠𝟎∫ℝ 

𝑒−(𝑘
2+𝜅2)∕(4𝛼2)

𝑘2 + 𝜅2 𝑒−i𝒌⋅(𝝆−𝝆𝑗 )𝑒−i𝜅(𝑧−𝑧𝑗 )𝑑𝜅 + 𝜙𝟎
𝓁(𝑧) , (B.3)

where 𝜙𝟎
𝓁(𝑧) is the contribution from zero mode. From [62], one has
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∫
ℝ 

𝑒−(𝑘
2+𝜅2)∕(4𝛼2)

𝑘2 + 𝜅2 𝑒−i𝜅𝑧𝑑𝜅 = 𝜋

2𝑘
[
𝜉+(𝑘, 𝑧) + 𝜉−(𝑘, 𝑧)

]
(B.4)

for 𝒌 ≠ 𝟎, where 𝜉±(𝑘, 𝑧) are dfined via Eq. (51). Substituting Eq. (B.4) into the first term of Eq. (B.3) yields 𝜙𝒌𝓁(𝒓) dfined via 
Eq. (24).

By Theorem 2.1, the zero-frequency term 𝜙𝟎
𝓁(𝑧) always exists and its derivation is very subtle. Let us apply the 2D Fourier transform 

(see Lemma A.3) to Poisson’s equation (B.1) only on periodic dimensions, and then obtain

(−𝜕2𝑧 + 𝑘2)𝜙𝓁(𝒌, 𝑧) = 4𝜋𝑔(𝒌, 𝑧) ∗𝑧 𝜏(𝒌, 𝑧) , (B.5)

where ∗𝑧 indicates the convolution operator along 𝑧 dimension. Simple calculations suggest

𝑔(𝒌, 𝑧) =
𝑁∑
𝑗=1 

𝑞𝑗𝑒
−i𝒌⋅𝝆𝑗 𝛿(𝑧− 𝑧𝑗 ) , and 𝜏(𝒌, 𝑧) = 𝛼√

𝜋
𝑒−𝑘2∕(4𝛼2)𝑒−𝛼2𝑧2 . (B.6)

The solution of Eq. (B.5) for 𝒌 = 𝟎 can be written as the form of double integral that is only correct up to a linear mode,

𝜙𝟎
𝓁(𝑧) = − 4𝜋

𝐿𝑥𝐿𝑦

𝑧 

∫
−∞

𝑧1

∫
−∞

𝑔(𝟎, 𝑧2) ∗𝑧2 𝜏(𝟎, 𝑧2)𝑑𝑧2𝑑𝑧1 +𝐴0𝑧+𝐵0

= − 2𝜋
𝐿𝑥𝐿𝑦

𝑁∑
𝑗=1 

𝑞𝑗

[
𝑧− 𝑧𝑗 + (𝑧− 𝑧𝑗 )erf

(
𝛼(𝑧− 𝑧𝑗 )

)
+ 𝑒−𝛼2(𝑧−𝑧𝑗 )2√

𝜋𝛼

]
+𝐴0𝑧+𝐵0 .

(B.7)

To analyze the short-range component 𝜙𝑠(𝝆, 𝑧) using a procedure similar to Eqs. (B.1)-(B.4), one obtains

𝜙𝟎
𝑠 (𝑧) =

𝜋

𝐿𝑥𝐿𝑦

𝑁∑
𝑗=1 

lim 
𝒌→𝟎

1 
𝑘

[
2𝑒−𝑘|𝑧| − 𝜉+(𝒌, 𝑧) − 𝜉−(𝒌, 𝑧)

]
= 2𝜋
𝐿𝑥𝐿𝑦

𝑁∑
𝑗=1 

𝑞𝑗

[
−|𝑧− 𝑧𝑗 |+ (𝑧− 𝑧𝑗 )erf

(
𝛼(𝑧− 𝑧𝑗 )

)
+ 𝑒−𝛼2(𝑧−𝑧𝑗 )2√

𝜋𝛼

]
.

(B.8)

Since 𝜙𝟎
𝑠 (𝑧) + 𝜙𝟎

𝓁(𝑧) matches the boundary condition Eq. (6) as 𝑧→ ±∞ and by the charge neutrality condition, one solves

𝐴0 =
2𝜋

𝐿𝑥𝐿𝑦

𝑁∑
𝑗=1 

𝑞𝑗𝑧 ≡ 0 , and 𝐵0 = − 2𝜋
𝐿𝑥𝐿𝑦

𝑁∑
𝑗=1 

𝑞𝑗𝑧𝑗 . (B.9)

This result finally gives

𝜙𝟎
𝓁(𝑧) = − 2𝜋

𝐿𝑥𝐿𝑦

𝑁∑
𝑗=1 

𝑞𝑗

[
(𝑧− 𝑧𝑗 )erf

(
𝛼(𝑧− 𝑧𝑗 )

)
+ 𝑒−𝛼2(𝑧−𝑧𝑗 )2√

𝜋𝛼

]
. (B.10)

Appendix C. The ideal-gas assumption for error analysis

Let 𝝍 represent a statistical quantity in an interacting particle system, and we aim to analyze its root mean square value given by

𝛿𝝍 ∶=

√√√√ 1 
𝑁

𝑁∑
𝑖=1 

‖𝝍 𝑖‖2 , (C.1)

where S𝑖 denotes the quantity associated with particle 𝑖 (e.g., energy for one dimension or force for three dimensions). Assume that 
𝝍 𝑖 takes the form

𝝍 𝑖 = 𝑞𝑖
∑
𝑗≠𝑖 

𝑞𝑗𝜻 𝑖𝑗 , (C.2)

due to the superposition principle of particle interactions, which implies that the total effect on particle 𝑖 can be expressed as the 
sum of contributions from each 𝑖− 𝑗 pair (including periodic images). Here, 𝜻 𝑖𝑗 represents the interaction between two particles. The 
ideal-gas assumption leads to the following relation⟨

𝜻 𝑖𝑗𝜻 𝑖𝑘
⟩
= 𝛿𝑗𝑘

⟨
𝜻2𝑖𝑗

⟩
∶= 𝛿𝑗𝑘𝜁

2 , (C.3)

where the expectation is taken over all particle cofigurations, and 𝜁 is a constant. This assumption indicates that any two different 
particle pairs are uncorrelated, and the variance of each pair is expected to be uniform. In the context of computing the force variance 
of a charged system, this assumption implies that
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∑
𝑗,𝑘≠𝑖

𝑞𝑗𝑞𝑘
⟨
𝜻 𝑖𝑗𝜻 𝑖𝑘

⟩
≈ 𝑞2𝑖 𝜁

2𝑄 , (C.4)

where 𝑄 represents the total charge of the system. By applying the law of large numbers, one obtains 𝛿𝜓 ≈ 𝜁𝑄∕
√

𝑁 , which can be 
utilized for the mea-field estimation of the truncation error.

Appendix D. Proof of Theorem 2.5

We begin by considering the real space truncation error of electrostatic potential

ℰ𝜙𝑠
(𝑟𝑐 , 𝛼)(𝒓𝑖) =

∑
|𝒓𝑖𝑗+M|>𝑟𝑐

𝑞𝑗
erfc(𝛼|𝒓𝑖𝑗 +M|)|𝒓𝑖𝑗 +M| (D.1)

for 𝑖th particle, which involves neglecting interactions beyond 𝑟𝑐 . By the analysis in Appendix C, this part of error can be approximated 
by 𝛿ℰ𝜙𝑠

with

𝛿2ℰ𝜙𝑠
= 1 

𝑉

𝑁∑
𝑗=1 

𝑞2𝑗

∞ 

∫
𝑟𝑐

erfc(𝛼𝑟)2

𝑟2
4𝜋𝑟2𝑑𝑟 = 4𝜋𝑄

𝑉
𝒬s(𝛼, 𝑟𝑐 ) , (D.2)

where 𝒬s(𝛼, 𝑟𝑐) is dfined via Eq. (29). Note that the erfc(𝑟) function satifies ([100], pp. 109-112)

erfc(𝑟) = 𝑒−𝑟2√
𝜋

∞ ∑
𝑚=0

(−1)𝑚
(1
2

)
𝑚
𝑧−(2𝑚+1) (D.3)

as 𝑟→∞, where (𝑥)𝑚 = 𝑥(𝑥− 1)⋯ (𝑥−𝑚+ 1) = 𝑥!∕(𝑥−𝑚)! denotes the Pochhammer’s symbol. Substituting Eq. (D.3) into Eq. (D.2)

and truncating at 𝑚 = 1 yields Eq. (30).

The Fourier space error, by Appendix B, is given by

ℰ𝜙𝓁
(𝑘𝑐, 𝛼)(𝒓𝑖) =

2 
𝐿𝑥𝐿𝑦

𝑁∑
𝑗=1 

𝑞𝑗
∑

|𝒌|>𝑘𝑐
∫
ℝ 

𝑒−(𝑘
2+𝜅2)∕(4𝛼2)

𝑘2 + 𝜅2 𝑒−i𝒌⋅(𝝆−𝝆𝑗 )𝑒−i𝜅(𝑧−𝑧𝑗 )𝑑𝜅 . (D.4)

For a large 𝑘𝑐 , one can safely replace the truncation condition with |𝒌+ 𝜅| > 𝑘𝑐 , resulting in

ℰ𝜙𝓁
(𝑘𝑐, 𝛼)(𝒓𝑖) ≈

1 
2𝜋2

𝑁∑
𝑗=1 

𝑞𝑗

∞ 

∫
𝑘𝑐

1 

∫
−1 

2𝜋

∫
0 

𝑒−𝑘2∕(4𝛼2)𝑒−𝑖𝑘𝑟𝑖𝑗 cos𝜑𝑑𝜃𝑑 cos𝜑𝑑𝑘

= 2 
𝜋

∞ 

∫
𝑘𝑐

𝑁∑
𝑗=1 

𝑞𝑗
sin(𝑘𝑟𝑖𝑗 )

𝑘𝑟𝑖𝑗
𝑒−𝑘2∕(4𝛼2)𝑑𝑘 .

(D.5)

Here, the summation over Fourier modes is approximated using an integral similar to Eq. (82), and one chooses a specific (𝑘, 𝜃,𝜑) so 
that the coordinate along cos 𝜃 of 𝒌 is in the direction of a specific vector 𝒓, and 𝒌 ⋅ 𝒓 = 𝑘𝑟 cos𝜑. The resulting formula is identical to 
Eq. (21) in [37] for the fully-periodic case, and 𝛿ℰ𝜙𝓁

can be derived following the approach in [37].

Appendix E. Force expression of the SOEwald2D

The Fourier component of force acting on the 𝑖th particle can be evaluated by taking the gradient of the energy with respect to 
the particle’s position vector 𝒓𝑖,

𝑭 𝑖
𝓁 ≈ 𝑭 𝑖

l,SOE
= −𝛁𝒓𝑖𝑈𝓁,SOE = −

∑
𝒌≠𝟎

𝛁𝒓𝑖𝑈
𝒌
𝓁,SOE

−𝛁𝒓𝑖𝑈
𝟎
𝓁,SOE

(E.1)

where

𝛁𝒓𝑖𝑈
𝒌
𝓁,SOE

= −
𝜋𝑞𝑖

𝐿𝑥𝐿𝑦

[ ∑
1≤𝑗<𝑖

𝑞𝑗𝛁𝒓𝑖𝜑
𝒌
SOE

(𝒓𝑖, 𝒓𝑗 ) +
∑

𝑖<𝑗≤𝑁

𝑞𝑗𝛁𝒓𝑖𝜑
𝒌
SOE

(𝒓𝑗 , 𝒓𝑖)

]
, (E.2)

𝛁𝒓𝑖𝑈
𝟎
𝓁,SOE

= −
2𝜋𝑞𝑖
𝐿𝑥𝐿𝑦

[ ∑
1≤𝑗<𝑖

𝑞𝑗𝛁𝒓𝑖𝜑
𝟎
SOE

(𝒓𝑖, 𝒓𝑗 ) +
∑

𝑖<𝑗≤𝑁

𝑞𝑗𝛁𝒓𝑖𝜑
𝟎
SOE

(𝒓𝑗 , 𝒓𝑖)

]
. (E.3)

Using the approximation Eqs. (66), (56) and (57), one can write the derivative in periodic directions as
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𝜕𝝆𝑖𝜑
𝒌
SOE

(𝒓𝑖, 𝒓𝑗 ) =
i𝒌𝑒i𝒌⋅𝝆𝑖𝑗

𝑘 
[
𝜉+
𝑀
(𝑘, 𝑧𝑖𝑗 ) + 𝜉−

𝑀
(𝑘, 𝑧𝑖𝑗 )

]
= 2𝛼𝑒−𝑘2∕(4𝛼2)√

𝜋𝑘 
i𝒌𝑒i𝒌⋅𝝆𝑖𝑗

𝑀∑
𝓁=1

𝑤𝑙

𝛼2𝑠2
𝑙
− 𝑘2

(
2𝛼𝑠𝑙𝑒−𝑘𝑧𝑖𝑗 − 2𝑘𝑒−𝛼𝑠𝑙𝑧𝑖𝑗

)
,

(E.4)

and in 𝑧 direction as

𝜕𝑧𝑖𝜑
𝒌
SOE

(𝒓𝑖, 𝒓𝑗 ) =
𝑒i𝒌⋅𝝆𝑖𝑗

𝑘 

[
𝜕𝑧𝑖 𝜉

+
𝑀
(𝑘, 𝑧𝑖𝑗 ) + 𝜕𝑧𝑖 𝜉

−
𝑀
(𝑘, 𝑧𝑖𝑗 )

]
= 2𝛼𝑒−𝑘2∕(4𝛼2)√

𝜋
𝑒i𝒌⋅𝝆𝑖𝑗

𝑀∑
𝓁=1

𝑤𝑙

𝛼2𝑠2
𝑙
− 𝑘2

(
−2𝛼𝑠𝑙𝑒−𝑘𝑧𝑖𝑗 + 2𝛼𝑠𝑙𝑒−𝛼𝑠𝑙𝑧𝑖𝑗

)
.

(E.5)

The partial derivatives of zero-frequency mode with respect to the periodic directions are zero, and the SOE approximation of its 
𝑧-derivative is given by

𝜕𝑧𝑖𝜑
𝟎
SOE

(𝒓𝑖, 𝒓𝑗 ) =
𝑀∑
𝑙=1 

𝑤𝑙√
𝜋
𝜕𝑧𝑖

[2𝑧𝑖𝑗
𝑠𝑙

+
(
1 
𝛼
−

2𝑧𝑖𝑗
𝑠𝑙

)
𝑒−𝛼𝑠𝑙𝑧𝑖𝑗

]

=
𝑀∑
𝑙=1 

𝑤𝑙√
𝜋

[
2 
𝑠𝑙

−
(
𝑠𝑙 +

2 
𝑠𝑙

− 2𝛼𝑧𝑖𝑗
)

𝑒−𝛼𝑠𝑙𝑧𝑖𝑗

]
.

(E.6)

It is important to note that the computation of Fourier space forces using Eq. (E.1) follows a common recursive procedure with 
energy, since it has the same structure as given in Eq. (69), and the overall cost for evaluating force on all 𝑁 particles for each 𝑘
point also amounts to O(𝑁), and the resulting SOEwald2D method is summarized in Algorithm 1.

Moreover, Lemma E.1 establishes the overall error on forces 𝑭 𝑖, and the proof follows an almost similar approach to what was 
done for the energy.

Lemma E.1. The total error of force by the SOEwald2D is given by

ℰ𝑭 𝑖
∶=ℰ𝑭 𝑖

s
+ℰ𝑭 𝑖

l
+
∑
𝒌≠𝟎

ℰ𝒌

𝑭 𝑖
l
,SOE

+ℰ𝟎
𝑭 𝑖

l
,SOE

(E.7)

where the first two terms are the truncation error and provided in Proposition 2.6. The remainder terms

ℰ𝒌

𝑭 𝑖
l
,SOE

∶= 𝑭𝒌,𝑖
l

− 𝑭𝒌,𝑖
l,SOE

, and ℰ𝟎
𝑭 𝑖

l
,SOE

∶= 𝑭 𝟎,𝑖
l

− 𝑭 𝟎,𝑖
l,SOE

(E.8)

are the error due to the SOE approximation as Eqs. (E.1)-(E.5). Given SOE parameters 𝑤𝑙 and 𝑠𝑙 along with the ideal-gas assumption, one 
has the following estimate:

∑
𝒌≠𝟎

ℰ𝒌

𝑭 𝑖
l
,SOE

≤√
2𝜆2

𝐷
𝛼2𝑞2𝑖 𝜀 , and ℰ𝟎

𝑭 𝑖
l
,SOE

≤ 4
√

𝜋𝜆2
𝐷
(1 + 2𝛼)𝐿𝑧

𝐿𝑥𝐿𝑦

𝑞2𝑖 𝜀 . (E.9)

Appendix F. The Debye-Hückel approximation

Under the DH approximation, one is able to estimate functions associated with the 𝑖-th particle in the form:

𝒢(𝒓𝑖) =
∑
𝑗≠𝑖 

𝑞𝑗𝑒
i𝒌⋅𝝆𝑖𝑗 𝑓 (𝑧𝑖𝑗 ) , (F.1)

where |𝑓 (𝑧𝑖𝑗 )| is bounded by a constant 𝐶𝑓 independent of 𝑧𝑖𝑗 . The DH theory considers the simplest model of an electrolyte solution 
cofined to the simulation cell, where all 𝑁 ions are idealized as hard spheres of diameter 𝑟𝑎 carrying charge ±𝑞 at their centers. 
The charge neutrality condition requires that 𝑁+ =𝑁− =𝑁∕2. Let us fix one ion of charge +𝑞 at the origin 𝑟 = 0 and consider the 
distribution of the other ions around it.

In the region 0 < 𝑟 ≤ 𝑟𝑎, the electrostatic potential 𝜙(𝒓) satifies the Laplace equation −Δ𝜙(𝒓) = 0. For 𝑟 ≥ 𝑟𝑎, the charge density 
of each species is described by the Boltzmann distribution 𝜌±(𝒓) = ±𝑞𝑒∓𝛽𝑞𝜙(𝒓)𝜌𝑟∕2 with number density 𝜌𝑟 =𝑁∕𝑉 . In this region, the 
electrostatic potential satifies the linearized Poisson-Boltzmann equation [10]:

−Δ𝜙(𝒓) = 2𝜋
[
𝑞𝜌𝑟𝑒

−𝛽𝑞𝜙(𝒓) − 𝑞𝜌𝑟𝑒
+𝛽𝑞𝜙(𝒓)] ≈ −4𝜋𝛽𝑞2𝜌𝑟𝜙(𝒓) , (F.2)

and its solution is given by

𝜙(𝒓) =
⎧⎪⎨⎪⎩

𝑞

4𝜋𝑟
− 𝑞𝜅

4𝜋(1 + 𝜅𝑎)
, 𝑟 < 𝑟𝑎 ,

𝑞𝑒𝜅𝑎𝑒−𝜅𝑟

4𝜋𝑟(1 + 𝜅𝑎)
, 𝑟 ≥ 𝑟𝑎 ,

(F.3)

Journal of Computational Physics 524 (2025) 113733 

27 



Z. Gan, X. Gao, J. Liang et al. 

where 𝜅 =
√

𝛽𝑞2𝜌 denotes the inverse of Debye length 𝜆D. By this definition, the net charge density for 𝑟 > 𝑟𝑎 is 𝜌>(𝒓) = −𝜅2𝜙(𝒓). Let 
us fix 𝒓𝑖 at the origin. Given these considerations, for 𝑟 ≥ 𝑟𝑎, one obtains the following estimate:

|𝒢(𝒓𝑖)| ≈
|||||||| ∫
ℝ3∖𝐵(𝒓𝑖 ,𝑟𝑎)

𝜌>(𝒓)𝑒−i𝒌⋅𝝆𝑓 (𝑧)𝑑𝒓

||||||||
≤ 𝑞𝑖𝐶𝑓 𝑒

𝜅𝑎

4𝜋(1 + 𝜅𝑎)

∞ 

∫
𝑎 

𝑒−𝜅𝑟

𝑟 
4𝜋𝑟2𝑑𝑟

= 𝑞𝑖𝐶𝑓𝜆
2
D
.

(F.4)

It is remarked that upper bound Eq. (F.4) is derived under the continuum approximation. In the presence of surface charges, 
the charge distribution along the 𝑧-direction may lack spatial uniformity. However, due to the cofinement of particle distribution 
between two parallel plates, the integral in Eq. (F.4) along the 𝑧-direction remains bounded. An upper bound in the form of |𝒢(𝒓𝑖)| ≤
𝐶𝑠𝐶𝑓 𝑞𝑖 can still be expected, where 𝐶𝑠 is a constant related to the thermodynamic properties of the system.

Appendix G. The Metropolis algorithm

In practice, the Metropolis algorithm [82,83] is employed to generate a sequence {𝒌𝜂}𝑃𝜂=1 from ℎ(𝒌). Since 𝒌◦𝑳 = 2𝜋𝒎 with 𝒎 an 
integer vector, one can conveniently sample from the discrete distribution H(𝒎) = ℎ(𝒌) to equivalently generate 𝒌. Once the current 
state of the Markov chain 𝒎𝜂 =𝒎old is known, the algorithm generates a random variable 𝒎∗ with 𝑚∗

𝜉
∼N[0, (𝛼𝐿𝜉)2∕2𝜋2], which is 

the normal distribution with mean zero and variance (𝛼𝐿𝜉)2∕2𝜋2. The new proposal is taken as 𝒎new = round(𝑚∗
𝑥,𝑚

∗
𝑦). To determine 

the acceptance rate, one obtains the proposal probability

𝑞(𝒎new|𝒎old) =
∏

𝜉∈{𝑥,𝑦}
𝑞(𝑚new

𝜉
|𝑚old

𝜉
) (G.1)

where

𝑞(𝑚new
𝜉

|𝑚old
𝜉

) =
√

𝜋

(𝛼𝐿𝜉)2

𝑚new
𝜉

+ 1
2

∫
𝑚new
𝜉

− 1
2

𝑒−𝜋2𝑡2∕(𝛼𝐿𝜉 )2𝑑𝑡

=

⎧⎪⎪⎨⎪⎪⎩
erf

(
𝜋

2𝛼𝐿𝜉

)
, 𝑚new

𝜉
= 0 ,

1
2

[
erf

(
𝜋(2|𝑚new

𝜉
|+ 1)

2𝛼𝐿𝜉

)
− erf

(
𝜋(2|𝑚new

𝜉
|− 1)

2𝛼𝐿𝜉

)]
, 𝑚new

𝜉
≠ 0 .

(G.2)

It is worth noting that the proposal distribution 𝑞(𝒎new|𝒎old) in the Metropolis algorithm presented here does not depend on the 
current state 𝒎old. The Metropolis acceptance probability is computed using the formula:

𝑎(𝒎new|𝒎old) ∶= min
{
H(𝒎new)𝑞(𝒎old|𝒎new)
H(𝒎old)𝑞(𝒎new|𝒎old) 

,1
}

. (G.3)

If the proposal is rejected, then 𝒎𝜂+1 = 𝒎𝜂 . If 𝒎new is accepted, then 𝒎𝜂+1 = 𝒎new. The sampling procedure has a small error since 
H(𝒎new) ≈ 𝑞(𝒎new|𝒎old). Our numerical experiments show an average acceptance rate of over 90%. Additionally, one can set an 
integer downsampling rate 𝒟, where only one sample is taken from every 𝒟 samples, to reduce the correlation between batches in 
the Metropolis process.

Data availability

Data will be made available on request.
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