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We investigate the effects of image charges, interfacial charge discreteness, and surface roughness
on spherical electric double layer structures in electrolyte solutions with divalent counterions in the
setting of the primitive model. By using Monte Carlo simulations and the image charge method,
the zeta potential profile and the integrated charge distribution function are computed for varying
surface charge strengths and salt concentrations. Systematic comparisons were carried out between
three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2
with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and
finite excluded volume. By comparing the integrated charge distribution function and the zeta poten-
tial profile, we argue that the potential at the distance of one ion diameter from the macroion surface
is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects
strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge
inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much
smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress
charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent
interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, inter-
facial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of
electric double layers. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4736570]

I. INTRODUCTION

The study of charged interfaces in electrolytes is a prob-
lem of fundamental importance to biophysics, electrochem-
istry, and colloidal science.1–6 A proper understanding of the
electric double layer (EDL) structure is essential to predict
the stabilization of colloidal dispersions and the properties of
biological systems. Under appropriate physical and chemical
conditions, charged interfaces display complex and counter-
intuitive phenomena such as the charge inversion and like
charge attraction, which attracts a great theoretical and experi-
mental interest.5 These phenomena have been extensively ob-
served in different systems including DNAs, self-assembled
membranes, and colloidal particles.7–10

In the generally accepted (by chemists) Gouy-Chapman-
Stern theory,11, 12 an EDL is composed of an internal Stern
layer, where some counterions are tightly bound to the
charged interface, and an outer diffuse layer, where counte-
rions exert thermal motions. The ion distributions in the dif-
fuse layer are usually calculated using the Poisson-Boltzmann
(PB) theory.13, 14 Being of mean-field nature, PB ignores the
excluded-volume effects as well as electrostatic correlations
of ions. It is popularly believed that PB fails in the presence
of multivalent ions or highly charged interfaces.15, 16 Vari-
ous methods, including but not limited to, modified PB theo-
ries, integral equation theories, and density functional theory,
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have been developed to describe physics beyond the Poisson-
Boltzmann framework. For example, it is notable that the
state-of-the-art classical density functional theory17–19 has in-
corporated the hard-sphere repulsion and electrostatic corre-
lation up to high precision, yielding results that are in quanti-
tative agreement with Monte Carlo (MC) simulations.

While most of the previous studies on the EDL model in-
terfacial charges as uniformly distributed over the macroion
surfaces, in reality, the surface charges are better modeled
as discrete particles. When colloidal particles were placed in
electrolyte solutions, the surface chemical groups release hy-
drogen cations to the solvent, resulting in negatively charged
interfacial ions, whose strengths depend on the environment
conditions. As an extremal example, phospholipids in aque-
ous solutions can carry a variable charge between −4e and
+1e under different physiological conditions.20–22 Recently,
there has been many works demonstrating20–29 that interfa-
cial charge discreteness has an important influence on the mi-
croion distribution near flat interfaces. For instance, Faraudo
et al.28, 29 discovered that discrete interfacial charges can lead
to an inversion of selectivity observed in a protein channel in
the presence of multivalent cations. These motivate a system-
atical study on the effect of discrete interfacial charges.

Charged objects immersed in electrolytes usually have
much lower dielectric constants than water. Therefore, polar-
ization charges (image charges) on the interfaces are a rele-
vant issue in the study of EDLs. The understanding of image
effects is of recent interest for electrostatic interactions of soft
matter systems.22, 30–34 Counterions that are attracted to the
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interface are repelled by their likely charged image charges
when they approach the interface. Therefore, image charges
reduce the ion density in the vicinity of charged interface.
This effect however diminishes as the surface charge strength
increases, as shown by Torrie et al.35 long time ago. For a
strongly charged surface, image charges push the whole EDL
outward by a small distance, but otherwise has no significant
influence on the phenomena such as the charge inversion, see
recent works by Wang and Ma.22, 32, 33 For recent reviews on
image charge effects in colloidal and biological systems, see
also Refs. 36 and 37. We note, however, there is a recent work
by Boda et al.38 showing that image charge effects may play
important roles in biological systems.

If the interfacial charges are discrete, they also have im-
age charges. In aqueous solvents and for planar interfaces,
these images are almost identical to the source charges and
therefore essentially double the surface charge density. This
may lead to substantial modification of the EDL structure,
as we shall show in the present work. Finally, charged inter-
faces are usually not smooth at microscopic scales. Surface
roughness at atomic scales may interfere with image charge
effects, and therefore change the physics of the charge inver-
sion phenomena. It is our purpose to study the interplay be-
tween image charges, interfacial charge discreteness, and sur-
face roughness using a model system of a spherical colloid.

To study image charge effects for a generic interface, it
is necessary to numerically solve the corresponding bound-
ary value problem for the Poisson equation. This is usually
too time consuming to be feasible in Monte Carlo simula-
tions. For some of recent works on smooth interfaces, see
Refs. 39 and 40. In this work, we shall explore the effects
of image charges, interfacial charge discreteness, and surface
roughness on the zeta potential and the charge inversion phe-
nomenon for spherical geometries by using a recent method
of multiple images.41, 42 We shall compare three different toy
models for charged interfaces: a smooth surface with uniform
surface charge density, a smooth surface with discrete inter-
facial charges, and a rough surface with discrete interfacial
charges. This problem is difficult to address using the con-
ventional method of the spherical harmonic expansion,43, 44

due to the intensive computation cost of the polarization po-
tential. This difficulty can be surmounted using the recently
developed method of multiple images.41, 42

The term zeta potential45, 46 is intimately related to the
Smoluchowski theories for electrophoresis: It is defined as
the electrical potential in the interfacial double layer (DL)
at the location of the supposed slipping plane versus a point
in the bulk fluid away from the interface. The existence of
a slipping plane is one of the fundamental assumptions of
electrophoresis theories, but we are not aware of any direct
experimental evidence for its existence. Defined as such, the
zeta potential cannot be directly measured, but can only be
inferred indirectly from electrokinetic data, through the ap-
plication of Smoluchowski theories. Numerical calculations
for the zeta potential have been made under different kind of
geometries and various electrolytes.47, 48 For 1:1 electrolyte
with low salt concentrations, it was shown that the mean-field
PB theory has a very good agreement with the simulation re-
sults. But in other cases, for example, with a 2:2 salt in elec-

trolytes, the PB fails to predict the result both qualitatively
and quantitatively.49

For strongly charged surfaces, there is a layer of coun-
terions strongly bound to the dielectric interface. If the in-
version of the electrophoretic mobility occurs, this condensed
layer must move with the colloid in the electrophoresis. Diehl
and Levin50 argued that in numerical computations of the zeta
potential using Monte Carlo simulations, the slipping plane
should be identified at about one counterion diameter away
from the colloidal surface. In the presence of the charge inver-
sion, an alternative, but probably even more natural choice of
the slipping plane would be the peak of the integrated charge
distribution function (ICDF). This later choice would rigor-
ously identify the charge inversion with the reversal of the col-
loidal mobility, which is generally assumed to be true. It is in-
teresting to note that in most numerical simulations, the peak
of the ICDF is indeed about one microion diameter away from
the surface. We note further that near the charge inversion
threshold, the precise location of the slipping plane is only of
minor importance, because the potential profile changes very
slowly near the peak of the ICDF. We shall follow the choice
of Diehl and Levin50 in this work.

The remaining of this work is organized as follows. In
Sec. II, we present the three distinct models for interfacial
charges and the simulation method used in this work. In
Sec. III, we present the simulation results and discuss in
details the effects of interfacial charge discreteness, image
charges, and surface roughness. Finally, we draw the conclud-
ing remarks in Sec. IV.

II. MODELS AND METHODS

We consider a charged colloidal particle with radius a
= 2 nm and dielectric constant εi = 2, hereafter referred
as the macroion, immersed in a 2:2 symmetric electrolyte.
Such a macroion can be used to model micelles, dendrimers,
and other colloids.51–55 The aqueous solvent is modeled as a
dielectric continua with a dielectric permittivity εo = 78.3,
while the ions are modeled as small hard spheres with diam-
eter τ = 0.4 nm and with all charges in their centers. The
spherical Wigner-Seitz (WS) cell model56 is employed for the
boundary in our simulation. The macroion is located at the
center of the cell (with radius R) and has a bare charge QM

= ZMe, surrounded by the solvent and microions. The elec-
trolyte is treated at the level of the restricted primitive model.
The microions are confined in the spherical WS cell. There
are N+ countercations with valence Z+ = 2 and N− co-anions
with valence Z− = −2 in the system. The whole system is
charge neutral, hence, N+Z+ + N−Z− + ZM = 0.

To explore the effects of image charges, interfacial charge
discreteness, and surface roughness on the structure of EDL,
we shall systematically compare three different models for
interfacial charges, which are illustrated in Fig. 1. In model
SURF1, the interfacial charges are uniformly distributed on
the colloidal surface. Equivalently, we can also put all sur-
face charges onto the center of the spherical colloid. Because
of the spherical symmetry, the image charges of all interfa-
cial charges cancel each other, so they have no influence on
mobile microions in the bulk. In model SURF2, there are ND
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FIG. 1. Schematics for three models of interfacial charges studied in this
work: (a) SURF1: uniform surface charges. It is equivalent to a single
point charge at the center of macroion. (b) SURF2: discrete interfacial point
charges on the surface. (c) SURF3: discrete interfacial charges with an ex-
cluded volume. Also in (a), we show the image charges of a mobile microion
qi as blue empty circles. In (b) and (c), a discrete interfacial charge qD pro-
duces image charges. The Kelvin image coincides with the source charge
itself, while other images lie inside the sphere.

point charges of valence ZD distributed on the smooth spheri-
cal colloidal surface. The total bare charge of the macroion
is therefore QM = qDND. Three different valences of dis-
crete interfacial charges are studied: ZD ∈ {−1, −2, −3}.
In practice, ZD = −1 corresponds to the carboxylate func-
tional group;57 ZD = −2 can be some kind of phospholipid
such as 2,2-dimethoxy-2-phenylacetophenone (DMPA);58 fi-
nally the so-called PIP2 lipids26, 59, 60 can have a valence be-
tween −2 and −4 depending on the solvent environment. The
locations of these ND charges are determined by running an
MC minimization of the electrostatic energy near zero tem-
perature with the constraint that the charges remain on the
colloidal surface. Typically, after 105ND MC moves, the in-
terfacial charges form a Wigner crystal on the surface. Model
SURF3 is the same as model SURF2, with the only differ-
ence that each interfacial charge acquires an excluded vol-
umes (bumps) with diameter τD = 0.4 nm. For simplicity of
computations, the portions of these bumps outside the sphere
are assumed to have the same dielectric constant as the sol-
vent. These two models have also been used in the study of
ion binding to polyelectrolytes.61

The bumps on the interface in SURF3 may have two
competing impacts. First they increase the minimal distance
between interfacial charges and mobile ions, by an amount of
τD/2 = 0.2 nm. This tends to weaken the interaction energy
between interfacial charges and the mobile ions, and therefore
suppress binding between them. Second the bumps also pro-
vide more interfacial area, so that more than one counterions
can be adsorbed near a given interfacial charge. The competi-
tion between these two tendencies plays an important role in
the local structure of the EDL.

The electric potential distribution, #(r), for a snapshot
ion distribution satisfies the Poisson equation (gauss unit)

− ∇ · ε(r)∇#(r) = 4π
∑

j

δ(r − rj ), (1)

subject to standard electrostatic boundary conditions. The di-
electric function ε(r) takes εi inside the sphere and εo out-
side, δ( · ) is the Dirac delta function, and the index j runs
over both the mobile microions in the bulk as well as the in-
terfacial charges on the macroion surface. Numerically solv-
ing this Poisson equation in three dimensional space is time
costly. Luckily for the spherical geometry, there is an efficient
image charge algorithm.41, 42

Given the dielectric boundary, the electrical potential at r
generated by one unit point charge at r′ is given by the elec-
trostatic Green’s function G(r, r′) that satisfies the following
differential equation:

− 1
4πεo

∇ · ε(r)∇G(r, r′) = δ(r − r′), (2)

with homogeneous electrostatic boundary conditions. We use
light italic font r ′ = |r′| to represent the radial distance in
spherical coordinates. For interfacial charges r′ = a while
for mobile ions r′ > a. The Green’s function is a linear su-
perposition of the point-charge Coulomb potential in free
space

G0(r, r′) = 1
|r − r′|

, (3)

and the potential of all image charges due to the polarization
of the macroion Gim(r, r′) (with a unit source charge fixed
at r′),

G(r, r′) = G0(r, r′) + Gim(r, r′). (4)

For the spherical geometry, the image potential was discussed
in details in Ref. 41. Here we invoke the result directly

Gim(r, r′) = −γ a/r ′

|r − rK |
+

∫ rK

0

γ υ(x/rK )υ−1/a

|r − x|
dx, (5)

where υ = εo/(εi + εo), γ = (εi − εo)/(εi + εo) ≈ −1, and
x = xr′/r ′. The first term is due to a (likely charged) point
image with charge −γ a/r′ at rK = r′a2/r ′2 (Kelvin image),
while the second term is due to an (oppositely charged) line
image extending from rK back to the center of the sphere.
These image charges are overall neutral. By contrast, a planar
interface only produces a point image (Kelvin image), and is
not charge neutral. The importance of the line image is con-
trolled by the ratio between the Debye length and the sphere
radius, λ/a. For our system, this parameter is not big, neither
is it negligibly small, see Table I.

Using the I-point Gauss-Legendre quadrature to approx-
imate the line integral, Gim(r, r′) can be rewritten as the po-
tential due to a total of I + 1 image charges41

Gim(r, r′) =
I∑

m=0

qm

|r − xm|
, (6)

where qm = ωm

2
γ a
r ′ , and locations xm = rK

( 1−sm

2

)1/υ
, {ωm, sm,

1 ≤ m ≤ I} are the I-point Gauss weights and locations on the
interval [−1, 1]. Note that m = 0 corresponds to the Kelvin
image charge, i.e., we have ω0 = −2 and s0 = −1. In this
simulation we choose I = 2. The image charges for mobile
and interfacial charges in models are illustrated in Figs. 1(a)–
1(c), respectively.

The total Hamiltonian of the system of N mobile ions can
be expressed as a sum of three contributions42

U =
N∑

i=1

UMm
i +

N∑

i=1

N∑

j=i

Umm
ij + UHS. (7)

The first part UMm
i is the interaction between macroion and

microions, while the second part Umm
ij is the interaction
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between microions. The third part UHS is the hard sphere re-
pulsions between mobile ions, interfacial ions, the macroion,
and the WS cell shell. It takes the positive infinity when any
volume exclusion constraint is violated and zero otherwise.

For SURF1, the interfacial charges are uniformly dis-
tributed on the sphere, hence their image charges, when added
up, cancel each other, and have no interaction with the mobile
ions. Therefore, UMm

i is the direct Coulomb interaction be-
tween the central charge at the origin and the mobile ion

βUMm
i = lBZMZiG0(0, ri), (8)

where lB = e2/4πε0εokBT is the Bjerrum length, ε0 is the vac-
uum permittivity, kBT is the thermal energy, and β = 1/kBT.
For SURF2 and SURF3, UMm

i is the interaction between in-
terfacial ions and the mobile ions

βUMm
i =

ND∑

n=1

lBZDZiG(ri , rn), (9)

where G is given by Eq. (4), while rn is the position of the nth
interfacial ion. It should be noted that due to the symmetry of
the Green’s function, G(ri , rn) = G(rn, ri), the interactions
between the interfacial ions and the image charges of the mo-
bile ions have been already included. Similarly, the microion-
microion interaction (the second term Umm

ij in Eq. (7)) can be
written as

βUmm
ij = lBZiZj

[
(1 − δij )G(ri , rj ) + δij

2
Gim(ri , rj )

]
,

(10)

where δij is the Kronecker delta. When i = j, it represents the
interaction of the charge and its images.

Canonical-ensemble Monte Carlo simulations based on
the standard Metropolis acceptantce/rejection rule62, 63 are
carried out to obtain the equilibrium properties of the model
systems. The initial configuration of each system is generated
by randomly placing the ions into the simulation cell satisfy-
ing the constraints of the hard-core repulsion. The total num-
ber of mobile ions, N, varies from about 200 to 300, depend-
ing on the salt concentrations and the WS cell radius. In each
simulation, we perform 1.2 × 106 N MC moves per particle.
The first 105N MC moves are performed using the simulated
annealing technique,64, 65 where we start with T = 2100 K
(Bjerrum length lB = 0.1 nm), and then slowly cool down to
room temperature T = 298 K (Bjerrum length lB = 0.71 nm).
This is followed by another 105 N MC moves for equilibra-
tion. Finally, 106 N MC moves are performed to store the data
for statistical analysis. In order to achieve high sampling ef-
ficiency, the acceptance ratio was kept about 0.3 by adjusting
the maximum step size of ion motion.66 We find that the au-
tocorrelation function (ACF) of total energy typically decays
to zero after about 12 000 MC steps (for the whole system).
Since in our simulation, about 200 × 106 MC steps are calcu-
lated, we have nearly 20 000 independent samples. The ACF
for one typical run is illustrated in Fig. 2.

We chose symmetric and multivalent 2 : 2 electrolytes in-
stead of more common asymmetric 2 : 1 electrolytes mainly
from the consideration of computational capacity. Never-
theless, 2 : 2 divalent salt systems are also experimentally

LAG

A
C

F

0 2000 4000 6000 8000 10000 12000
0

0.1

0.2

0.3

0.4

0.5

using tempering algorithm
standard Metropolis algorithm

FIG. 2. Energy autocorrelation function (ACF) as a function of MC steps.
System parameters: the surface charge density: 0.1 C/m2, ZD = 3, salt con-
centration C = 0.1 M. For other parameters, see Table I.

relevant67, 68 and have been studied both analytically69–71 and
numerically.72, 73 It is known that the structure of EDLs is
mainly determined by the valence of counterions.47, 48 In our
simulations, the salt concentrations of the systems take three
values: C = 0.1, 0.2, and 0.5 M; the surface charge density
of the macroion, σ , varies from −0.1 to −0.6 C m−2, corre-
spondingly the bare charges range from −30e to −180e, and
the Gouy-Chapman length (lGC = 1/2πZ+lBσ ) ranges from
0.031 to 0.19 nm. The radius of the WS cell R is chosen to be
at least 16 times longer than the Debye length λ, so that the
influence of the cell wall on the EDL structure is negligible.
The radius of the spherical macroion is kept a = 2 nm. All
simulation parameters are summarized in Table I.

The zeta potential and the ICDF are calculated for
three different surface charge models, SURF1, SURF2, and
SURF3. As discussed in the Introduction, the zeta potential is
defined as the average potential one microion diameter away
from the colloidal surface, ζ = #(a + τ ). For spherical EDLs,
this potential can be explicitly obtained by integrating the

TABLE I. Relevant system parameters used in the Monte Carlo simulations.

εi = 2 Colloidal dielectric constant
εo = 78.3 Solvent dielectric constant
ZM = −30 to −180 Macroion valence
Z± = ±2 Counterion and coion valence
ZD = −1, −2, −3 Interfacial ion valence
a = 2 nm Macroion radius
τ = 0.4 nm Microion diameter
τD = 0.4 nm Diameter of interfacial ions in SURF3
T = 298 K Room temperature
lB = 0.71 nm Bjerrum length
lGC = 0.19 ∼ 0.031 nm Gouy-Chapman length
C = 0.1, 0.2, 0.5 M Three salt concentrations
λ = 0.48, 0.33, 0.21 nm Corresponding Debye lengths
R = 7.72, 6.13, 4.19 nm Corresponding WS cell radii
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FIG. 3. Top row: The zeta potential (average potential at one micro-ion diameter away from the interface) for SURF1 as the function of surface charge density
σ for both with and without image charge effects. Three different concentrations of 2:2 salt are calculated: (a) C = 0.1 M, (b) C = 0.2 M, and (c) C = 0.5 M.
Bottom row: average potential at half micro-ion diameter away from the interface.

Poisson equation17

ζ = 4π

εo

∫ ∞

a+τ

∑

i

ρi(r)Zie

(
r − r2

a + τ

)
dr, (11)

where ρ i(r) is the mean density of the ith ion species, and Zi

its valence. The integrated charge distribution function Q(r)
as a function of radius r is given by

Q(r) = QM + [Z+N+(a, r) + Z−N−(a, r)], (12)

where N±(a, r) are the average numbers of positive/negative
ions in the spherical shell between a and r, and QM the bare
charge of macroion. It is found that Q(r) changes sign at r ≈ a
+ 3τ /4 when the charge inversion takes place. The maximum
of the ICDF curve is defined as the inverted charge, which
equals zero if no charge inversion happens. See Figs. 4, 6,
and 9 for illustrations of the ICDF curves. We have also cal-
culated the standard deviation of the zeta potential to make
sure that the simulation results are accurate. For the system
parameters shown in Fig. 2, for example, the zeta potential is
found to be ζ = 31.833 mV, while its standard deviation is:
0.279 mV.

III. RESULTS AND DISCUSSION

A. SURF1: Uniform surface charge distribution

In model SURF1, interfacial charges are smoothly dis-
tributed on the spherical colloidal surface. The image charge
potential of interfacial charges is averaged out and has no
influence, but microions do have image charges that are in-
side the colloidal sphere. These images repel the source
charge away from the colloidal surface, resulting in a de-
pletion zone for mobile microions near the interface. It has
been shown that except this depletion effect, image charges
of the mobile ions have no influence on the charge inversion
phenomena.43 In agreement with these results, our simula-
tion results show that the image charges only slightly change
the value of the zeta potential. Illustrated in the first row of
Fig. 3 are the zeta potentials for model SURF1 with and
without image charges, for three different concentrations of
2:2 salt.

For comparison we also show in the bottom row of Fig. 3
the average potential #(a + τ /2) at distance of one microion

radius τ /2 away from the interface (which is often used in
literature as the zeta potential). We find that this potential is
drastically different from #(a + τ ). More importantly, #(a
+ τ /2) remains negative for the whole range of the surface
charge strengths studied for the cases of salt concentration
0.1 M and 0.2 M, and therefore shows no sign of the charge
inversion. By strong contrast, the potential #(a + τ ) indi-
cates the charge inversion at σ ≈ −0.35 C m−2 (salt 0.1 M)
and σ ≈ −0.3 C m−2 (salt 0.2 M). The plot for the ICDFs in
Fig. 4 also clearly shows the charge inversion for C = 0.2 and
σ = −0.6 C/m2. We therefore conclude that #(a + τ ), rather
than #(a + τ /2), is a good definition of the zeta potential
in term of the characterization of the charge inversion phe-
nomenon. This agrees with the results by Diehl and Levin.50

B. SURF2: Discrete surface charges without
volume effect

In model SURF2, interfacial charges are point charges
distributed on the sphere. The corresponding zeta potential as
a function of surface charge density is illustrated in Fig. 5.
Three cases for the valences of interfacial charges are shown,
with ZD = −1, −2, and −3, respectively. For ZD = −1 (Fig. 5,
left column), the zeta potentials with image charge effect be-
come substantially higher than those with no image charge ef-
fect. Comparing with Fig. 3, it is evident that the image charge

r-a (nm)

IC
D

F

0 0.5 1 1.5

-150

-100

-50

0

50 no image
with image

0.4 0.6 0.8-5

0

5

10

15

FIG. 4. Model SURF1. The integrate charge distribution functions (ICDFs).
σ = −0.6 C/m2 and C = 0.2 M. The peak of these curves are at slightly
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FIG. 5. The zeta potential for SURF2 as a function of mean surface charge density, with various valences of interfacial charges, both with and without image
effects. Left: ZD = −1; middle: ZD = −2; right: ZD = −3. It is clear from these plots that image charges enhance charge inversion for ZD = −1, and suppress
charge inversion for ZD = −2, −3.

effects greatly enhance the overcharging tendency. This is
clearly due to the effective doubling of interfacial charge va-
lence by their image charges.

Interestingly, in the cases of higher valences of interfacial
ions, ZD = −2 (Fig. 5, center column) and ZD = −3 (Fig. 5,
right column), image charge effects influence zeta potential
profiles in the opposite direction. The zeta potentials with the
image charges remain uniformly below those without images;
therefore, the tendency of the charge inversion is substantially
suppressed by the image charge effects. Furthermore, the im-
age charge effects grow with increasing surface charge den-
sity, which is the opposite of what was discovered for uni-
formly charged surfaces by Torrie et al.35 It is also interesting
to note that the suppression of the charge inversion is more
significant for ZD = −2 than for ZD = −3.

These effects of image charges are also evident in the
ICDF plots. In Fig. 6 we show the ICDF curves for various
interfacial charge valences, with fixed surface charge density
σ = −0.6 C/m2 and salt concentration C = 0.2 M. It is clear
that for ZD = −1, the integrated charges with image charges
always lie above that without image charges, while for
ZD = −2 and −3, the curves with image charges lie below
those without image charges. In fact, for these latter two cases,
the image charge effects completely eliminate charge inver-
sion. The suppression is again more pronounced for ZD = −2
than for ZD = −3.

The huge suppression of the charge inversion for di-
valent interfacial charges is likely due to the strong bind-
ing between these interfacial charges and the divalent coun-
terions, which completely neutralizes the interfacial charge
groups. Other counterions can no longer be adsorbed onto the
nearby area if such a binding occurs. The binding energy is
about 2ZDℓB/(τ /2) ≈ 14kBT without image charges and is fur-
ther doubled by the image charge effects. This binding may
strongly decreases the effective surface charge density and
therefore suppresses charge inversion. To verify this physi-
cal picture, we have looked at typical simulation snapshots of
ion distributions near the colloidal surface, for model SURF2

(no bumps, with image charges). One typical simulation snap-
shot is shown in Fig. 7 for each of three cases ZD = −1, −2,
−3. It is found that for ZD = −2 (Fig. 7, center panel), about
90% of interfacial charges are closely bound to counterions,
and become completely neutralized. Such a binding is clearly
strengthened by image charge effects.

By contrast, for ZD = −1 (Fig. 7, left panel), about 46%
of interfacial charges are closely bound to counterions. Since
the counterions carry charge 2e while interfacial charges carry
−e, each of these bindings contribute to the charge inversion.
Indeed model SURF2 with ZD = −1 goes charge reversal at a
much lower surface charge density, comparing with SURF1,
as one can see from Figs. 5 and 3. Finally, for ZD = −3
(Fig. 7, right panel), we can see that the majority of interfa-
cial charges are also bound to counterions. In this case, how-
ever, one-to-one binding does not invert the charge, nor does
it completely neutralize the interfacial charge group. Some in-
terfacial charges actually can bind to two counterions. Their
numbers are however not enough to invert the charge of the
whole colloid. Model SURF2 with ZD = −3 goes charge re-
versal at higher surface charge density than model SURF1.
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FIG. 6. Model SURF2. The integrate charge distribution functions (ICDFs)
for different valences of interfacial ions. σ = −0.6C/m2 and C = 0.2 M.
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FIG. 7. Typical snapshots of model SURF2 after equilibrium is achieved. Gray spheres: counterion; yellow spheres: coion; small white spheres: interfacial
charges. Left: ZD = −1; center: ZD = −2; right: ZD = −3. System parameters: salt concentration 0.2 M, surface charge density 0.6 C/m2.

We note that the binding between interfacial charges and
counterions is important for ZD = −2, −3 even in the absence
of image charges. Image charge effects however substantially
enhance these bindings. Our simulation demonstrates the fol-
lowing: comparing with a uniform surface charge distribution,
the interfacial charge discreteness enhances charge inversion
if interfacial charge groups have smaller valence than coun-
terions, and suppresses charge inversion if interfacial charge
groups have equal or larger valence than counterions. Image
charges strengthen these effects by effective doubling of the
surface charge density.

C. SURF3: Discrete surface charges with finite
exclusion volumes

In model SURF3, there is a spherical excluded volume
(bump) with diameter τD = 0.4 nm around each interfacial
charge, which prevents the counterions from getting closer
than τ = 0.4 nm to the interfacial charge. Zeta potentials
for SURF3 for various values of C and ZD are shown in
Fig. 8. Comparing with Fig. 5, we see that the effects of im-
age charges become much smaller, in fact almost negligible,

in the presence of volume exclusion effects of bumps. Never-
theless, for all three cases of interfacial charge valences, im-
age charge effects slightly enhance charge inversion, in strong
contrast with model SURF2. Furthermore, while in SURF2,
the charge inversion threshold of the surface charge density
increases with the valence of interfacial charges, in SURF3,
the charge inversion threshold actually decreases with the va-
lence of interfacial charges. Another striking effect is that, the
more realistic model SURF3 gives a much higher zeta poten-
tial than model SURF1, as one can see by comparing Fig. 8
with Fig. 3. These surprising results are probably due to the
extra interfacial area around the bumps, where multiple coun-
terions can be attracted by a given surface charge. This effect
becomes more important as the valence of interfacial charge
increases.

We also plot the ICDF curves in Fig. 9 for fixed salt
concentration C = 0.2 M and the surface charge density σ

= −0.6 C/m2. The figure shows that the charge inversion is
moderately enhanced by the image charges by examining the
strength of the inverted charges. The peaks of the ICDF curves
are also pushed a little further away from the surface by the
image charges, in agreement with previous studies by other
groups.22, 32, 33, 35, 36
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FIG. 8. The zeta potential for SURF3 as a function of surface charge density for different valences of interfacial charges in cases both with and without image
charges. The valence of interfacial ions ZD = −1, −2, −3 from left to right.
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FIG. 9. Model SURF3. The ICDF curves for ZD = −1, −2, and −3 for the
cases with and without image charges. Salt concentration C = 0.2 M and
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We also compare the zeta potential of models SURF2 and
SURF3 (both with image charges) in Fig. 10. We find that for
ZD = −1, the data for SURF3 are uniformly and substantially
lower than those for SURF2, indicating that charge inversion
is strongly suppressed by the excluded volumes. By strong
contrast, for ZD = −2 or −3, the zeta potentials for SURF3
are substantially higher than those for SURF2, indicating that
charge inversion is strongly enhanced by the bumps.

What is the physics underlying these huge differences be-
tween SURF2 and SURF3? Recall that in model SURF3, each
surface charge group has an exclusion volume (“bump”) with
radius 2 Å. These bumps have two competing effects: First
the minimal distance between surface ions and the ions in the
bulk is 4 Å in SURF3, instead of 2 Å in SURF2. Hence, the
maximal interaction energy between surface ions and counte-
rions is approximately reduced by half in SURF3. This seems
to be the dominant factor in the case of ZD = −1, leading
to strong suppression of charge inversion in SURF3. Second
the bumps provide extra adsorption area for the counterions.
If the interaction between interfacial charges and counterions
is already strong enough, these extra areas will lead to more

counterions condensed near the interface, and therefore en-
hance charge inversion. This seems to be the dominant factor
for the cases of ZD = −2 and ZD = −3.

IV. CONCLUDING REMARKS

We have studied the effects of image charges, interfacial
charge discreteness, and surface roughness on the zeta poten-
tial profile and the integrated charge distribution function for
a strongly charged spherical colloid. Such a study is possible
owing to the recent development of image charge methods for
a spherical boundary, which approximates the image potential
with a few image point charges. Our main results are summa-
rized as below:

(1) In agreement with Diehl and Levin,50 we find that the
zeta potential defined at about one counterion diameter
away from the colloidal interface provides a good indi-
cator for the charge inversion phenomenon.

(2) The effects of image charges depend crucially on the na-
ture of the surface charge distribution. For uniform sur-
face charges (SURF1), the influence of image charges on
zeta potential is minor, in agreement with previous re-
sults by other groups. For discrete surface charge groups
with no excluded volumes (SURF2), we find that im-
age charges strongly enhance charge inversion if the sur-
face charge groups are monovalent, and strongly sup-
press charge inversion if the surface charge groups are
multi-valent. For discrete surface charge groups with ex-
cluded volumes (SURF3), we find that the effects of im-
age charges only slightly enhance charge inversion.

(3) Model SURF3 with discrete interfacial charges and fi-
nite excluded volumes gives a much higher zeta poten-
tial than model SURF1, where the interfacial charges
are continuous and the colloidal surface is smooth. Fi-
nally, the effects of excluded volumes (bumps) of inter-
facial charges are substantial and depend crucially on
the valences of surface charges. For monovalent sur-
face charges, we find that a high surface roughness
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FIG. 10. The zeta potential for SURF2 and SURF3 (both with image charge effects) as a function of mean surface charge density. The valence of interfacial
ions ZD = −1, −2, −3 from left to right.
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strongly suppresses charge inversion, while for multi-
valence surface charges, a high roughness strongly en-
hances charge inversion. These results show that the
roughness of charged interfaces is an extremely impor-
tant factor.

Overall, our simulation results demonstrate intricate and
competing effects associated with image charges, interfacial
charge discreteness, and surface roughness. All these factors
can substantially affect the profile of the zeta potential and
the charge inversion. Therefore, short scale details of charged
interfaces need to be better clarified before the structure of
EDLs can be understood properly.
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