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Multiple-image treatment of induced charges in Monte Carlo simulations
of electrolytes near a spherical dielectric interface
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The polarization-induced charges of a dielectric sphere are studied for charged colloidal systems in electrolyte
solutions with a primitive model. The method of constructing multiple-image charges is used to approximate the
polarization potential of a microion outside the sphere; it is based on a numerical discretization of the potential’s
analytical integral representation, and can systematically approximate the exact potential with desired accuracy
by varyiation of the number of point images. Different aspects of the image effects are then investigated by Monte
Carlo simulations for several colloidal systems, in both salt-free and salty environments. Furthermore, we studied
the influence of discrete surface charges of different valences, and demonstrate that the polarization charges can
significantly strengthen charge reversal for the colloid-microion complex, especially for multivalent interfacial
ions.
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I. INTRODUCTION

Electrostatic interactions play an extremely important role
in the study of the structure and functional properties of
charged polymers in solution. In colloidal and biological
science, the attractive or repulsive force between colloidal
particles is usually controlled by the charge strength of the
colloids and screened by small ions such as sodium and chlo-
ride ions present in the system. The interior of colloid particles
such as latex particles, surfactant micelles, and global proteins
has a low dielectric constant (typically between 2 and 5),
much smaller than that of the surrounding electrolyte (about
80 for water). As the size of colloids, ranging from 10 to
10 000 Å, is larger than atomic scales, an understanding of
the image effect [1–4] due to the dielectric jump is crucial to
correctly predict the physicochemical properties of a colloidal
system which is of both experimental and theoretical interest.

Mean-field approximations based on the Poisson-
Boltzmann (PB) theory and its variants (see [5–8], to mention a
few references), pioneered by Gouy and Chapman, are widely
used due to the simplicity and clear physical meaning of
these approximations. They are successful in describing the
electrostatic interaction as long as the electrostatic coupling
strength is weak, especially for electrolyte solutions containing
only monovalent ions. These approximations, however, break
down in interpreting the origin of charge inversion [9,10]
and the attraction between like-charge objects driven by
electrostatic correlations, which have been reported in a large
number of experimental studies. The promising alternative
is the primitive model originating from McMillan-Mayler
solution theory [11], which represents the small ions in
the electrolyte as mixtures of charged hard spheres with
different sizes, whereas the solvent is treated by a mean-field
approximation and characterized by its dielectric constant.
The charged colloids and ions interact through unscreened
Coulomb potentials. Analytical tools such as integral equations
and density functional approaches, as well as computer
simulations using molecular dynamics and Monte Carlo (MC)
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methods, have been developed [12–19]. It is widely found
that the primitive model can predict electrostatic correlations
of the macroion (colloidal particle) with other small ions in
solution, and can thus be used to study the charge inversion
and like-charge attraction. Computer simulations with the
primitive model are of importance for electric interactions of
colloidal solutions due to the limitations of theoretical studies
in treating dielectric boundaries.

Using computer simulations with the primitive model, a
lot of attention has been paid to planar dielectric substrates
(a single plate or two parallel plates) in contact with an
electrolyte solution; the colloidal particles are considered to be
large in comparison with the size of the small ions. With this
approximation, the image effect due to the dielectric difference
is simply taken into account by putting a point charge at the
mirror location of each ion [2]. In spite of its importance, the
shortcoming of the planar approximation is that the ions are not
affected by the curvature of the colloidal particle, and so the
approximation fails to work if the influence of the curvature
is considerable. For this purpose, other geometries such as
spheres or cylinders should be used.

Concerning the image effect of spherical geometries,
the exact representation is the Kirkwood multipole series
expansion [20], which has been applied to MC simulations [21]
of colloidal systems; however, it is known that the series
has a slow convergence for ions near the spherical surface
and many multipoles have to be included, leading to an
unacceptably high computational cost for systematic studies.
Image methods have been widely employed in many biological
systems, e.g., by Friedman [22], Linse [23], and Abagyan and
Totrov [24]. These approximations could pose an accuracy
problem for colloidal interactions because use of only one or
two images to represent the polarization potential is crude
and the accuracy cannot be systematically improved. The
situation has motivated the development of a higher-order
approximation with multiple images [25] by discretization
of the exact integral representation, which can approach any
desired accuracy by increase in the number of images. By
extension, the idea of multiple images can also be used for the
interior field calculation of the PB equations [26,27] and for
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cylindrical geometries [28]; see the recent review [29] for this
topic.

The main objective of this paper is to investigate the
polarization effect of a colloidal sphere immersed into an
electrolyte solution, in which a precise and efficient treatment
of polarization-induced charges is crucial. The multiple-image
approximation is coupled with MC simulations to form a
particle system of Coulomb interactions, which is a mixture
of the ions and their images, to perform the calculation. When
applied to large colloidal systems, such pairwise Coulomb
interaction is useful, as many accelerating algorithms like fast
Fourier transform [30] and fast multipole methods [31–34]
can be used. Furthermore, by taking into account the effect of
image charges, we study the charge inversion phenomenon
near the colloidal surface, and illustrate that the charge
inversion can be enhanced by both the multivalent discrete
interfacial charges and the image charges.

The organization of the remainder of the paper is as follows.
In Sec. II, we describe the computational model and the details
of the MC simulations. In Sec. III, the simulation results and
discussion are presented. The conclusions are drawn in Sec. IV.

II. METHOD

In our model system, a charged colloidal sphere, referred
to as a macroion, is surrounded by a dielectric environment
embedded with small hard spheres representing the ionic
species. We first focus on the electrostatic potential around a
dielectric sphere of radius a induced by a point charge outside
the sphere (see Fig. 1) using the spherical coordinates r =
(r,θ,φ); for convenience the charge of the spherical macroion
is assumed to be zero, as if not the superposition principle
can be used to add its influence. The multipole expansion
and its image approximation are studied. We then discuss
their application in MC simulations of a negatively charged
macroion in contact with electrolytes.

A. Image representation of the polarization potential

We suppose the origin is at the center of the dielectric
sphere describing the macroion. The interior of the macroion
is characterized by a dielectric constant εi different from
that of the surrounding solvent medium, εo. These form the
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FIG. 1. (Color online) Two-dimensional schematic illustration
of a dielectric sphere with a point charge outside. The polarization
effect of the charge due to the dielectric discontinuity is represented
by four images (empty circles); the closest one to the boundary is the
Kelvin image.

dielectric function ε(r) on the full space. Typically, εi = 2
for a hydrocarbon substrate and εo = 78.3 for water solvent
at room temperature. The electrostatic influence of the ionic
species in the solvent is treated as if they are point charges.
From classical electrodynamics [35], the electric potential is
described by the Poisson equation

−∇ · ε(r)∇�(r) = 4πρ(r), (1)

where ρ(r) is the charge density of free ions surrounding the
macroion. Here ρ(r) = qδ(r − rs) for one source charge q

at rs outside the sphere leads to the Green’s function of the
inhomogeneous system by the Kirkwood multipole expansion
[20].

The absence of the source charge inside the sphere reduces
Eq. (1) to the Laplace equation, 	� = 0, for r < a. By
azimuthal symmetry, the Laplace equation can be written as

1

r2

∂

∂r

(
r2 ∂�

∂r

)
+ 1

r2 sin η

∂

∂η

(
sin η

∂�

∂η

)
= 0, (2)

where η is the angle between r and rs and satisfies cos η =
cos θ cos θs + sin θ sin θs cos(φ − φs). The general solution
for the potential inside the sphere can then be described in
terms of spherical harmonics,

�(r) =
∞∑

n=0

Anr
nPn(cos η), (3)

where Pn(·) is the Legendre polynomial of order n.
Outside the dielectric sphere, the solution can be described

by

�(r) = �Coul(r) + �pol(r), (4)

where �Coul = q/εo|r − rs | is the direct Coulomb potential
in the homogeneous solvent, and �pol is the polarization
potential, also known as the image correction, due to the di-
electric jump on the spherical surface. Applying the multipole
expansion of the reciprocal distance, the general form of the
potential �(r) reads

�(r) = q

εo

∞∑
n=0

rn
<

rn+1
>

Pn(cos η) + q

εo

∞∑
n=0

Bn

rn+1
Pn(cos η), (5)

where we have used the harmonic property of �pol, and r< (r>)
is the smaller (larger) of r and rs .

Now we choose the constant coefficients An and Bn

so that the potentials inside and outside the sphere satisfy
the boundary conditions on the interface. The boundary
conditions are the continuities of the potential and the dielectric
displacement,

�in = �out and εi
∂�in

∂r
= εo

∂�out

∂r
, (6)

which lead to a set of two linear equations for each n,

anAn = an

rn+1
s

+ 1

an+1
Bn,

(7)
εi

εo
nan−1An = nan−1

rn+1
s

− n + 1

an+2
Bn,
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TABLE I. Truncation terms for the multipole expansion and
numbers of point images (discrete images for the integral plus the
Kelvin image) required to obtain relative errors less than 0.1% and
0.01% in the self-energy calculation of a charge at rs . The dielectric
constants inside and outside the sphere are 2 and 78.3, respectively.

0.1% error 0.01% error

rs/a Multipoles Images Multipoles Images

1.02 178 8 236 11
1.04 91 7 121 9
1.06 62 6 82 8
1.08 48 6 63 7
1.1 39 5 51 7
1.2 21 4 28 5
1.3 15 4 20 5
1.4 12 4 16 5
1.5 11 4 13 4
1.6 9 4 12 4

and its solution is given by

An = 1

rn+1
s

(2n + 1)εo

nεi + (n + 1)εo
,

(8)

Bn = a2n+1

rn+1
s

n(εo − εi)

nεi + (n + 1)εo
.

The polarization potential is then obtained:

�pol(r) = q

εo

∞∑
n=0

a2n+1

(rrs)n+1

n(εo − εi)

nεi + (n + 1)εo
Pn(cos η). (9)

A straightforward way to compute this expression is to
truncate the infinite series into a finite sum. Usually, the
series converges quickly for the source charge is far from
the boundary. The convergence is slow, however, for charges
near the spherical surface, as shown in Table I, requiring a
large number of truncation terms in Eq. (9), and, as a result,
limiting practical calculations. The method based on the line
image representation is more efficient and gives an alternative
and simpler analytical way.

By a simple derivation based on the harmonic expansion of
the reciprocal distance, Eq. (9) can be reformulated [25,36–39]
as the sum of contributions from a Kelvin image, qK, and a line
image from the origin to the Kelvin image point, rK = rsa

2/r2
s ,

�pol(r) = qK

εo|r − rK| +
∫ rK

0

qline(x)

εo|r − x|dx, (10)

where x = xrs/rs , and the strengths of the Kelvin image and
the line image are given by

qK = −γ a

rs

q and qline(x) = γ σq

a

( rK

x

)1−σ

,

with the parameters γ = εi−εo
εi+εo

and σ = εo
εi+εo

. The idea of the
line image representation was originally given in the 19th
century by Neumann [40] and redeveloped several times by
several authors in various fields of application, as summarized
by Lindell [41].

To obtain a highly accurate approximation with discrete
point images, we use the idea of the multiple-image approxi-

mation [25]. The I -point Gauss-Legendre quadrature is used
to approximate the line integral, leading us to

�pol(r) = qK

εo|r − rK| +
I∑

m=1

qm

εo|r − xm| , (11)

with the charge strengths qm = ωm

2
γ aq

rs
and locations xm =

rK( 1−sm

2 )1/σ , where {ωm,sm,m = 1,2, . . . ,I } are the I -point
Gauss weights and locations on the interval [−1,1]. If we let
q0 = qK and x0 = rK, the approximate potential reads

�pol(r) =
I∑

m=0

qm

εo|r − xm| , (12)

which is a total of I + 1 point images. A schematic illustration
of the image charges is plotted in Fig. 1, where the images are
symbolized with empty circles.

The number of images, I + 1, is determined by the desired
accuracy. In Table I, comparable results are given for the
self-polarization-energy of a point charge outside the sphere,
q�pol(rs)/2, as a function of the ratio rs/a, calculated by
two methods. One is by direct truncation of the series of the
multipole expansion (9). The other is the method of images.
It is shown that only a few image charges can provide a very
accurate approximation; thus the method will be very useful
for simulations of large particle systems.

B. Monte Carlo simulations

We have employed canonical-ensemble Metropolis MC
simulations [42,43] based on the primitive model for a solution
in the presence of a negatively charged dielectric colloidal
sphere and microions. The method of multiple images for
the charged hard-sphere system of the macroion and N

small microions is used to describe the image effect of
the counterions and coions due to the dielectric boundary.
The spherical macroion is of radius a, and a bare charge
Q = −ZMe is placed at the center (origin) or discretely
distributed on the surface. The microions are used to ensure
the electroneutrality of the system and represent the salt
concentration; all of them are of diameter τ and have charge
qi = ±Ze for i = 1, . . . ,N , Z being the valence of the ion.
We use (I − 1)-point quadrature for the line image, so each
microion is accompanied by I image charges. Overall, there
are N × I images.

For a uniformly charged colloidal surface, the total potential
energy of the system, i.e., the Hamiltonian, is expressed as a
sum of three contributions,

U =
N∑

i=1

⎛
⎝Ums

i +
N∑

j=i+1

U ss
ij +

N∑
j=1

I−1∑
im=0

U im
ij

⎞
⎠ . (13)

The first term represents the interaction between the macroion
and the source ions,

Ums
i =

{
lB
βe2

Qqi

ri
for ri � a + τ

2 ,

∞ for ri < a + τ
2 ,

(14)

where lB = βe2/(4πε0εo) is the Bjerrum length and ε0 is the
vacuum permittivity. β = 1/kBT is the inverse thermal energy
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with kB being the Boltzmann constant and T the temperature.
At room temperature, lB = 7.14 Å for water. The second term
in Eq. (13) represents the interaction between source charges,
which is the Coulomb potential plus a hard-sphere potential,

U ss
ij =

{
lB
βe2

qiqj

rij
for rij � τ,

∞ for rij < τ.
(15)

The last term in Eq. (13) describes the contribution from the
interaction between the images and source ions, given by

U im
ij =

{(
1 − δij

2

)
lB
βe2

qiq
im
j

|ri−rim
j | for ri � a + τ

2 ,

∞ for ri < a + τ
2 ,

(16)

where δij is the Kronecker delta, and q im
j and rim

j are the charge
strength and location of the im-th one of I images of charge j .

III. RESULTS AND DISCUSSION

In the simulations, the following parameters are assumed
throughout the paper: εi = 2, εo = 78.3, and T = 300 K. The
microion diameter is τ = 3.57 Å, and the colloidal radius is set
to be a = 30 Å. The spherical cell model [44] is used to define
the boundary of the electrolyte solution, which introduces an
infinite external potential to the system if a small ion moves
outside the cell. The radius of the spherical cell is denoted
by Rcell, which takes the value Rcell = 20τ so that the volume
fraction of the macroion remains a constant.

Seven colloidal systems are used to test the simulation
aspects with the image effect. Systems I and II have the same
valence of the macroion, ZM = 80. System I has monovalent
counterions, Z = 1, and system II divalent counterions, Z = 2.
The valence of systems III–VII is also fixed with ZM = 160
and with divalent counterions and coions and varying salt
concentration.

The MC results are depicted using the macroion-microion
radial distribution function (RDF) and the integrated charge
distribution function (ICDF) by calculating the bulk densities
of the counterions and coions. The RDF of each ionic type is
given by

g±(r) = 〈N±(r,r + 	r)〉
4
3π [(r + 	r)3 − r3]

, (17)

normalized by
∫ Rcell

a
πr2g(r)dr, where N±(r,r + 	r) is the

particle number in the spherical shell between r and r +
	r , and g(r) = g+(r) + g−(r) is the sum of the RDFs of
counterions and coions. The angular bracket 〈·〉 represents an
average over all the bins. The ICDF describes the total charge
distribution along the radial direction, which is defined by

Q(r) = QM + Z[N+(a,r) − N−(a,r)]. (18)

Generally, Q(r) increases from QM to 0 when r changes from
a to the cell radius Rcell. Charge inversion happens if Q(r)
reverses its sign somewhere.

A. Dependence of accuracy on the number of images

We first investigate the influence of varying image number
for systems I and II, the cases with zero salt concentration. In
the calculations, the image number I increases from 0 to 8. By
I = 0, we mean that there is no image present, �pol = 0, which
represents the case when the dielectrics inside and outside the
sphere are the same. When I = 1, only the Kelvin image is
considered, and when I = 2, the effect of the line image is
taken into account.

The profiles of the RDFs and ICDFs near the colloidal
spheres of these two systems are plotted in Fig. 2. Presumably,
at least two images have to used in order to take into account the
polarization effect as well as to retain the electrical neutrality
of the image charges. It is found that it is important to take into
account the image effect in order to correctly determine the
counterion distribution, in particular for multivalent counteri-
ons. We see that the results break down if only the Kelvin image
is present, demonstrating that treatment of the line image is
necessary. It is also shown that three to four images are enough
to provide a convergent approximation to the image effect, in
agreement with the self-energy calculation for one ion shown
in Table I. The RDF curves overlap for I = 3 to 8 even in the
enlarged subplots, showing the fast convergence. This is very
advantageous in comparison to the direct multipole expansion
for which one has to use dozens or even hundreds of terms for
convergence of the desired accuracy.

B. Charge inversion for uniformly charged surface

Charge inversion (also called overcharging or charge
reversal) occurs when a highly charged macroion is immersed
in a solution with multivalent conterions and the interfacial
charge is overcompensated by the counterions, so that the
effective charge of the macroion-microion complex is inverted.
This charge inversion has been demonstrated in experiments on
many different systems [45,46]. The traditional PB theory fails
to describe it, and thus the explanation of charge inversion has
motivated a lot of theoretical and computational investigation
as it could be relevant in many physical and biological
problems such as the like-charge attraction between DNA rods
[9]. A number of theories [10], such as integral equations, field
theoretic calculations, and density functional theory, have been
developed to describe this phenomenon, as well as molecular
dynamics and MC simulations [21,47–50] which confirm the
theoretical predictions. In the simulations of this paper, we
aimed to verify the performance of the method of images
through simulating this phenomenon and to study the effect of
the image charges of the overcharging by considering discrete
interfacial charges in Sec. III C.

We simulate the charge inversion phenomenon by inves-
tigating the salt effect on the ion distribution with systems
III–VII, which are composed of a macroion of ZM = 160 and
divalent salt ions. The divalent counterion numbers of the five
systems are Nc = 80, 180, 280, 380, and 480, respectively.
80 counterions correspond to a concentration of 87 mM, and
thus the five systems have concentrations from 87 to 522 mM
for conterions and 0 to 435 mM for coions.

In the calculations, three images are used to represent
the image effect of each ion. The results for the RDFs
and ICDFs are illustrated in Fig. 3, where those without
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FIG. 2. (Color online) Radial distribution and integrated charge distribution functions of systems I (a), (b) and II (c), (d) with increasing
number of images from I = 0 to 8. The insets in (a) and (c) are enlargements of the corresponding dashed region.

the image effect taken into account are also included for
comparison. It can be seen that the inverted charge Qinv

(the maximum of each ICDF curve) increases montonically
with growing salt concentration. The overcharging starts at
Nc = 280 with the inverted charge Qinv = 1.32 e and goes
to 8.57 e when Nc = 480. The image effect can weaken the
overcharging effect, mostly because of the repulsive effect
between the image charges and the microions. These results
are in agreement with a thorough study of the polarization
effect of spherical macroions performed by Messina [21]; thus
the accuracy of the image method is shown to be reasonable
although only three images are used for each ion.

All calculations are performed on a Linux machine with
2.67 GHz CPU and 48 Gbytes of memory. In each simulation,
the program runs 1 × 106 trial moves per particle, without
parallel acceleration. Accounting for the image effect, the CPU
times from system III with 80 microions to system VII with
880 microions go from 20 to 2300 min (around 37.8 h), scaling
as O(N2). As the particle system composed of microions
and their images is in Coulomb form, this computational
complexity can be reduced if linear-scaling fast algorithms
are introduced to speed up the particle interactions, and thus
this image method for treating the surface polarization can
be useful to study systems of larger scale, which will be the
objective of our ongoing project.

C. Image effect on discrete surface charge

For a single spherical macroion, the bare charge is repre-
sented by a central charge, which is equivalent to a uniformly
charged macroion surface. However, the charges are discretely
localized in nature in the form of interfacial groups whose
charges range from −1e to −4e [51]. The distribution of
surface charges could play an important role in the counterion
distribution near the surface. The effect of discrete macroion
charge distribution has been studied in recent years [52–54].
However, the image effect of the discrete surface charge has
been less investigated. In fact, if the macroion is modeled by a
uniformly distributed surface charge, then the image effect of
the surface charge vanishes due to symmetry. But if the surface
charge is discrete and randomly distributed on the surface, the
symmetry no longer exists. We study the effect of discrete
surface charges on charge inversion with different head group
valences through MC simulations, taking into account the
image effect.

The discrete colloidal charges are represented by small ions
of diameter τ (the same as the counterion’s diameter), which
are randomly distributed on the surface of the macroion. The
total charge of the macroion is QM = qDND , where qD =
−ZDe, ZD is the valence of the discrete interfacial ions, and
ND is their number. These discrete ions are embedded in the
colloidal sphere with their centers at its surface. Figure 4 is a
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FIG. 3. (Color online) Radial distribution and integrated charge distribution functions of systems III-VII, where (a), (d) are the counterion
RDFs, (b), (e) are the coion RDFs, and (c), (f) are the ICDFs. Three images are used to approximate the polarization potential of each ion.

schematic view of the setup, where each interfacial charge and
its Kelvin image overlap each other. In the MC simulations,
the term for the macroion-microion interaction Ums

i in the
Hamiltonian Eq. (13) is changed into the following form:

Ums
i =

ND∑
n=1

Ums
ni , (19)

where the interaction between the ith microion and nth
interfacial ion is given by

Ums
ni =

⎧⎪⎪⎨
⎪⎪⎩

∞ for ri < a + τ
2 or rms

ni < τ,

lB
βe2

(
qDqi

rms
ni

+
I−1∑

im=0

q im
D qi

rms
n,im,i

)
otherwise.

(20)

Here rms
ni is their distance apart, q im

D is the image charge of the
interfacial ion, and rms

n,im,i is the distance between the image
charge and the ith microion.

We investigate the same five systems as previously studied
(systems III–VII), which are composed of a macroion of ZM =
160 and divalent salt ions, i.e., the salt concentration ranges
from 0 to 435 mM. The only difference is that the surface
charge of the macroion is discrete, and randomly distributed,
with the four different valences ZD = 1, 2, 3.019, and 4. In
calculations, three images are used to represent the image
effect of both the salt ions and the discrete interfacial charges.
We run four different random surface distributions to obtain the
average inverted charge Qinv for each system with a certain ZD .
The resulting differences in the inverted charge Qinv compared
with the previous simulation results are illustrated in Fig. 5,

where those obtained without taking account of the image
effect are also shown for comparison.

Without accounting for the image effect [Fig. 5(a)], it is
shown that the discrete representation of the surface charge
with monovalent ions has smaller strengths of the inverted
charge than the uniform surface charge, mostly because the
macroion has a larger volume with the presence of interfacial
ionic balls. The results for ZD = 2 almost overlap with
those for the uniform surface charge, and higher valences of
interfacial ions cause stronger overcharging. With the image
effect, the overcharging for ZD = 1 is strengthened and the
inverted charges are close to those for the uniform colloidal
charge. This is reasonable because the Kelvin image of the

a

τ
qi

qD

FIG. 4. (Color online) Two-dimensional schematic view of the
setup: The discrete interfacial charges are in blue. The macroion of
radius a is in red. The microion in the electrolyte is the full green
circle. The image charges of both the microion and the interfacial
ion are represented by empty circles, where the interfacial ion is
overlapping with its Kelvin image.
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FIG. 5. (Color online) The inverted charge Qinv for systems
III–VII with different ZD , where (a) does not account for the image
effect, while (b) uses three image charges to represent the polarization
potential of each ion. The error bar represents the maximum deviation
of the four data points from their mean.

interfacial charge has the same sign as its source charge and
thus has the effect of improving the attraction to counterions
(see Fig. 4), even though the mobile ions and their images
repel each other. From Fig. 5(b), it can be seen that Qinv also
gets larger for a larger ZD , and we can conclude that the
inverted charge is significantly increased when the interfacial
charges have higher valence. Impressively, the presence of

dielectric images further enhances charge inversion when the
surface charge is discrete; for example, when ZD = 4 the Qinv

of system VII equals 11.16 e without the image effect, and
becomes 19.37 e when image charges are present. This is in
contrast with previous studies [14,21] reporting that the image
effect weakens the degree of charge inversion, although the
weakening of the overcharging is true for the uniform surface
charge in the present study (see the triangle symbols in Fig. 5).

IV. CONCLUSION

In summary, we have studied the image effect for ions
near a spherical macroion with MC simulations by using
the method of multiple images with different numbers of
images. The treatment with the image charges transforms
the inhomogeneous system into a pairwise Coulomb system
composed of the source and image charges, which allows
for efficient calculation. The accuracy and efficiency of the
algorithm are demonstrated through some colloidal systems;
it is shown that only three images can provide an accurate
approximation to the polarization effect of a source ion, and
that the calculation of a relatively large system can be run on
a desktop machine in dozens of hours.

We investigated the image effect on the charge inversion of
the macroion for both a uniform surface charge and discrete
charges. It is revealed that taking the image effect into account
weakens the degree of the inverted charge for the uniform
surface charge, but significantly strengthens it for discrete
surface charges if the interfacial ions are of high valence.
This is mostly because the charges of the interfacial ion and its
Kelvin image overlap each other and the other images are
buried inside the colloidal sphere, leading to an enhanced
attraction to counterions.
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