
Chinese Physics B
     

PAPER

On-node lattices construction using partial
Gauss–Hermite quadrature for the lattice
Boltzmann method*

To cite this article: Huanfeng Ye et al 2019 Chinese Phys. B 28 054702

 

View the article online for updates and enhancements.

You may also like
GLOBAL H i KINEMATICS IN DWARF
GALAXIES
Adrienne M. Stilp, Julianne J. Dalcanton,
Steven R. Warren et al.

-

Parametric Recovery of LineofSight
Velocity Distributions from AbsorptionLine
Spectra of Galaxies via Penalized
Likelihood
Michele Cappellari and Eric Emsellem

-

INTERNAL STELLAR KINEMATICS OF
M32 FROM THE SPLASH SURVEY:
DARK HALO CONSTRAINTS
K. M. Howley, P. Guhathakurta, R. van der
Marel et al.

-

This content was downloaded from IP address 202.64.178.226 on 27/02/2022 at 05:48

https://doi.org/10.1088/1674-1056/28/5/054702
https://iopscience.iop.org/article/10.1088/0004-637X/765/2/136
https://iopscience.iop.org/article/10.1088/0004-637X/765/2/136
https://iopscience.iop.org/article/10.1088/0004-637X/765/2/136
https://iopscience.iop.org/article/10.1088/0004-637X/765/2/136
https://iopscience.iop.org/article/10.1088/0004-637X/765/2/136
https://iopscience.iop.org/article/10.1086/381875
https://iopscience.iop.org/article/10.1086/381875
https://iopscience.iop.org/article/10.1086/381875
https://iopscience.iop.org/article/10.1086/381875
https://iopscience.iop.org/article/10.1088/0004-637X/765/1/65
https://iopscience.iop.org/article/10.1088/0004-637X/765/1/65
https://iopscience.iop.org/article/10.1088/0004-637X/765/1/65


Chin. Phys. B Vol. 28, No. 5 (2019) 054702

On-node lattices construction using partial Gauss–Hermite
quadrature for the lattice Boltzmann method∗

Huanfeng Ye(叶欢锋)1,†, Zecheng Gan(干则成)2, Bo Kuang(匡波)1, and Yanhua Yang(杨燕华)1,3

1School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA

3National Energy Key Laboratory of Nuclear Power Software, Beijing 102209, China

(Received 26 October 2018; revised manuscript received 1 February 2019; published online 8 April 2019)

A concise theoretical framework, the partial Gauss–Hermite quadrature (pGHQ), is established to construct on-node
lattices of the lattice Boltzmann (LB) method under a Cartesian coordinate system. Compared with the existing approaches,
the pGHQ scheme has the following advantages: extremely concise algorithm, unifies the constructing procedure for sym-
metric and asymmetric on-node lattices, and covers a full-range quadrature degree of a given discrete velocity set. We
employ the pGHQ scheme to search the local optimal and asymmetric lattices for {n = 3,4,5,6,7} moment degree equi-
librium distribution discretization on the range [−10,10]. The search reveals a surprising abundance of available lattices.
Through a brief analysis, the discrete velocity set shows a significant influence on the positivity of equilibrium distribu-
tions, which is considered as one of the major impacts of the numerical stability of the LB method. Hence, the results of the
pGHQ scheme lay a foundation for further investigations to improve the numerical stability of the LB method by modifying
the discrete velocity set. It is also worth noting that pGHQ can be extended into the entropic LB model, even though it was
proposed for the Hermite polynomial expansion LB theory.

Keywords: equilibrium distribution discretization, partial Gauss–Hermite quadrature
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1. Introduction

The lattice Boltzmann (LB) method is a powerful ap-
proach for hydrodynamics.[1,2] The essence of the LB method
is an intuitively parallel collision-streaming algorithm with
discretized position rrr, time t, and microscopic velocity vvvα

fα(rrr+ vvvα δt , t +δt) =

(
1− 1

τ

)
fα(rrr, t)+

1
τ

f eq
α (rrr, t), (1)

where fα and f eq
α are, respectively, the population and equi-

librium distribution corresponding to the discrete velocity
vvvα . Equation (1) can be treated as a characteristic integral
of the Bhatnagar–Gross–Krook (BGK)–Boltzmann equation
along vvvα ,[3,4] depicting the microscopic dynamic of parti-
cles. With specific discretization of the continuous BGK–
Boltzmann equation in velocity space (i.e., on-node lattices),
each collision-streaming proceeding would locate on nodes,
achieving a simple but efficient “stream along links and col-
lide at nodes” algorithm, while the corresponding macroscopic
dynamics such as the Navier–Stokes equations can be prop-
erly recovered. In practice, this velocity discretization can
be achieved by constructing a set of equilibrium distributions
{ f eq

α } on a discrete velocity set {vα}; i.e., equilibrium dis-
tribution (ED) discretization. Under a Cartesian coordinate
system, multidimensional f eq

α can always be constructed as a
tensor product of the unidimensional f eq

α . This enables us to

focus on the unidimensional Cartesian model to simplify our
framework.

The ED discretization has been investigated in-depth and
a lot of excellent theories have been proposed, such as the
small-Mach-number approximation,[5] the Hermite polyno-
mial expansion,[6] and the entropic LB model.[7] According
to the Hermite polynomial expansion,[6,8,9] for nth-moment-
order ED discretization which restores un moment integral, its
f eq
α can be expressed as

f eq
α = wα ρ

n

∑
i=0

Hi (ξα)
φ i

i!
, (2)

where

ρ =
q−1

∑
α=0

f eq
α , φ =

q−1

∑
α=0

f eq
α ξα/ρ, (3)

wα =
1√
π

∫
e−ξ 2

q−1

∏
β=0
β 6=α

ξ −ξβ

ξα −ξβ

dξ . (4)

Here, ξ = v/
√

2RT and φ = u/
√

2RT are the dimensionless
variables of microscopic velocity v and macroscopic veloc-
ity u, respectively, in which R is the gas constant and T is
the temperature. Hi (ξ ) is the ith Hermite polynomial, and{

ξ0, . . . ,ξq−1
}

is the corresponding discrete set (or abscissas)
which evaluates the integral exactly for k ≤ 2n
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Ik =
∫ 1√

π
e−ξ 2

ξ
kdξ =

q−1

∑
α=0

wα ξ
k
α . (5)

The abscissas and the discrete velocity set have the relation
ξα = vα/

√
2RT . The Hermite polynomial expansion con-

verts the nth-moment-order ED discretization under a unidi-
mensional Cartesian coordinate system into a pure 2n-degree
quadrature problem; i.e., constructing the smallest abscissas{

ξ0, . . . ,ξq−1
}

fulfilling Eq. (5) for all k≤ 2n. One can refer to
Section 1 in the Supplementary Material for the detail deriva-
tion. For the sake of simplifying the discussion, we designate
Eq. (5) as quadrature equation (QE) and its equation system of
all k≤ n as nth quadrature equation system (QES). It should be
noted that the nth QES is the detail governing equation system
for a given abscissa set {ξα}with quadrature degree n. Hence,
in the discussion hereinafter, QES and quadrature degree shall
be used indistinguishably.

An available smallest quadrature for 2nth QES is the
(n+1)th Gauss–Hermite quadrature, which are the zeros of
(n+1)th Hermite polynomial. The issue is that the zeros of an
Hermite polynomial with degree above 3 cannot fit into nodes,
which means that they cannot be expressed as {v0, . . . ,vq−1}c,
where v and c stand for integer-valued discrete micro velocity
and real-valued lattice constant 1/

√
2RT , respectively. This

leads to an off-node lattices in un≥3 ED discretization. Hence,
to construct an on-node lattices for un≥3 ED discretization—
i.e., {v0, . . . ,vq−1}c-type quadrature—one has to manually
solve QES, which involves both {ξα} and {wα}. To simplify
the notation, in the discussion hereinafter, “lattices” would di-
rectly denote “on-node lattices” unless otherwise stated. In
practice, a symmetric discrete velocity set {0,±v1, . . . ,±vm}
is predefined. This avoids the computation of QE with odd ex-
ponent k, which significantly simplifies QES, and makes QES
purely consist of c and {wα}. Employing the skills in Refs. [9]
and [10] to deal with QES, a univariate polynomial equation
for lattice constant c can be obtained, which separates the co-
solving of c and {wα}. This leads us to a performable con-
struction of on-node lattices. Actually, this univariate polyno-
mial equation can be directly obtained through a mathematical
tool and avoids the tedious QES solving.

In this paper, the partial Gauss–Hermite quadrature
(pGHQ) mathematical tool is proposed. The pGHQ is a
quadrature rule derived from the Gauss–Hermite quadrature. It
keeps the most desirable characteristic of the Gauss–Hermite
quadratur; i.e., its quadrature is constructed directly on ab-
scissa polynomial avoiding the co-solving of {ξα} and {wα}
in QES. Meanwhile, it offers a performable approach for on-
node lattices construction. The on-node lattices construction
in the pGHQ scheme is extremely concise. Once a discrete
velocity set has been given, a full-range univariate polynomial
equation system of its lattice constant c would be directly ob-
tained through pGHQ. Compared with the existing schemes,

our approach has the following advantages: (i) the algorithm
is extremely concise; (ii) the procedure to construct the uni-
variate polynomial equations is unified for both symmetric and
asymmetric lattices; and (iii) the generated univariate polyno-
mial equation system covers full-range quadrature degree of
the given {v0, . . . ,vq−1}. We will elaborate these points in de-
tail in the following.

2. pGHQ theory and implementation
The theory of pGHQ can be stated as follows: for a q-

point abscissa set {ξα}, whose abscissa polynomial Wq (ξ ) =
q−1
∏

α=0
(ξ −ξα) satisfies the orthogonal relationship∫

e−ξ 2
Wq (ξ ) p(ξ )dξ = 0, ∀p(ξ ) ∈ PK(K<q), (6)

where PK is the set of polynomials of degrees not exceed K, it
has (q+K) quadrature degree indicating that the set {ξα} and
its corresponding {wα} calculated by Eq. (4) fulfill (q+K)th
QES . The pGHQ is a generalization of the Gauss–Hermite
quadrature, which is the special case of Eq. (6) with polyno-
mial degree K = (q−1). Given any polynomial p(ξ ) of de-
gree not exceeding K, it can always be expressed as a linear
combination of Hermite polynomials with degree not exceed-
ing K

p(ξ ) =
K

∑
i=0

ciξ
i =

K

∑
i=0

aiHi (ξ ). (7)

Employing the orthogonal relationship of Hermite polynomi-
als ∫

e−ξ 2
Hi (ξ )H j (ξ )dξ =

{
0, i 6= j,
2ii!
√

π, i = j, (8)

the orthogonality in Eq. (6) indicates that for a q-point quadra-
ture with q + K quadrature degree, its abscissa polynomial
does not involve Hermite polynomials with degree below
K + 1 when written in the Hermite polynomial form; i.e., all
the coefficients of Hermite polynomials with degree below
K +1 are zero

Wq (ξ ) =
q

∑
i=0

AiHi (ξ ) =
q−1

∑
i=K+1

AiHi (ξ )+
1
2q Hq (ξ ) . (9)

Because Ai is an expression of the abscissas {ξα}, then the
zero coefficients {Ai = 0|i ≤ K} could be used as the govern-
ing equation system of the abscissas under pGHQ for q+K
quadrature degree. For the detail derivation, one can refer to
Section 2 in the Supplementary Material. Hence, for a q-point
set {ξα}, once the coefficient equations {Ai = 0} are satisfied
for all i≤ K in its Hermite-polynomial-form abscissa polyno-
mial Eq. (9), this set and its corresponding {wα} in Eq. (4)
fulfill (q+K)th QES. This coefficient equation system is de-
noted as Hermite coefficient equation system (HCES) in this
paper. To identify an HCES, the denotation q ∼ Kth is added
before HCES, in which q is the abscissa number, K denotes the
equations contained in the HCES {Ai = 0|i≤ K}, and (q+K)
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is its corresponding quadrature degree. HCES is equivalent to
QES but without involving {wα}. It indicates that pGHQ owns
the desirable characteristic of the Gauss–Hermite quadrature,
constructing the quadrature directly on abscissa polynomial
avoiding the co-solving of {ξα} and {wα} in QES.

Now, we employ pGHQ to construct the univariate poly-
nomial equation of c. The univariate polynomial equation of c
essentially is a relation between c and the quadrature degree of
the corresponding abscissa set {v0, . . . ,vq−1}c. Once the equa-
tion is satisfied, its corresponding {v0, . . . ,vq−1}c possesses a
certain quadrature degree, fulfilling QES with a specific order.
In classical approaches,[8,10] it is obtained through manually
computing the QES, which needs to construct the QES and
separate the co-solving of c and {wα}. Now, as the previous
discussion shows that HCES is an equation system equivalent
to QES but without involving {wα}, this relation can be di-
rectly constructed by calculating its Hermite polynomial co-
efficients {Ai} in abscissa polynomial. Given a predefined
{v0, . . . ,vq−1} with an unknown lattice constant c, we substi-
tute it into the abscissa polynomial with relation ξα = vα c, and
expand the product

Wq (ξ ) =
q−1

∏
α=0

(ξ − vα c) =
q

∑
k=0

bkξ
k, (10)

where bk is a univariate polynomial of c. Introducing the ex-
plicit expressions for monomial in terms of Hermite polyno-
mials

ξ
k =

k!
2k

bk/2c

∑
l=0

1
l!(k−2l)!

Hk−2l (ξ ), (11)

where b·c is the floor function, equation (10) can be converted
into Hermite polynomial form

Wq (ξ ) =
q

∑
i=0

AiHi (ξ ). (12)

Since equation (11) does not involve new unknown variables,
coefficient Ai is still a univariate polynomial of c. Accord-
ing to the pGHQ theory, a series of q ∼ Kth HCES could be
constructed for {v0, . . . ,vq−1}c, where 0 ≤ K ≤ q− 1. They
cover all possible quadrature degrees of the discrete velocity
set, from q to 2q− 1. These series of HCES are the target
univariate polynomial equation systems of c, which in classi-
cal approaches are constructed through solving QES. Hence,
the on-node lattices construction in the pGHQ scheme is sim-
ply performed on the abscissa polynomial without calculating
QES and separating the co-solving of lattice constant c and
weights {wα}. Taking {0,±1,±5} as an example, after con-
verting its abscissa polynomial into the Hermite polynomial
form

Wq (ξ ) =
4

∏
α=0

(ξ − vα c) = ξ
5−26c2

ξ
3 +25c4

ξ
1

=
5

∑
i=0

AiHi (ξ ), (13)

where the coefficients {Ai} read

A5 =
1

32
, A4 = 0, A3 =

5
8
− 26c2

8
, A2 = 0,

A1 =
15
8
− 78c2

4
+

25c4

2
, A0 = 0, (14)

its series of HCES could be directly generated. For an in-
stance, its 5∼ 4th HCES {Ai = 0|i≤ 4} is

0 = 0,
15
8
− 78c2

4
+

25c4

2
= 0,

0 = 0,
5
8
− 26c2

8
= 0, 0 = 0. (15)

Once this HCES has real-valued solution c, {0,±1,±5}c sat-
isfies the 9th QES. It is worth noting that the {0,±1,±5}c cor-
responding to Eq. (15) is the 5th Gauss–Hermite quadrature,
which as mentioned before is off-node. This off-node charac-
teristic is reflected as no real solution c for its HCES. Equa-
tion (14) presents the most significant advantage of the pGHQ
scheme; i.e., comparing with the generation of a specific uni-
variate polynomial equation in classical approaches,[8,10] the
pGHQ scheme systematically offers a series of HCES for lat-
tice constant c once the expressions of coefficients {Ai} are
obtained.

In practice, given a discrete velocity set {v0, . . . ,vq−1},
the quadrature degree of {v0, . . . ,vq−1}c is required to be as
high as possible so that it can be used to construct higher
moment degree ED discretization. Therefore, one can start
with solving its q ∼ (q− 1)th HCES, where K = q− 1 is the-
oretically the largest. Once this HCES has no real-valued
solutions for c, one decreases K by 1. As the construction
of HCES shows, this decreasing is actually loosing the con-
straints on lattice constant c by reducing the governing equa-
tions {Ai = 0}. This procedure is repeated until a real-valued
c is found. Its corresponding K gives the quadrature degree
of {v0, . . . ,vq−1}c, q+K, which indicates that this set can be
used to construct the ub(q+K)/2c ED discretization. The con-
struction of f eq

α is illustrated in Eq. (2). We designate this
approach as the pGHQ scheme. It should be noted that there
is no limitation on the given discrete velocity set. Given any
kind of discrete velocity set, whether it is symmetric or asym-
metric, the coefficients {Ai} can always be obtained and their
procedures are unified with the same formulas Eqs. (10)–(12),
which is another great advantage of the pGHQ scheme. Hence,
the pGHQ scheme supports constructing all kinds of lattices,
symmetric or asymmetric.

Compared with the classical approaches,[9,10] the con-
struction of univariate polynomial equation for lattice constant
c in the pGHQ scheme is systematical and general, supporting
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symmetric and asymmetric lattices and covering all quadra-
ture degrees. The procedure is concise without involving co-
solving of c and {wα}. It can be mathematically proven that
the univariate polynomial equation of c in Refs. [9] and [10]
equals HCES. Here, a justification for the Shan scheme[9] is
offered in Section 3 of the Supplementary Material. It is also
worth noting that though pGHQ is proposed for the Hermite
polynomial expansion theory, it can also be extended into en-
tropic LB model. Actually, it is the mathematical mechanism
of a popular entropic LB discretization, the Karlin–Asinari
scheme.[11] The detailed justification can be found in Section
4 of the Supplementary Material. This explains the interest-
ing question[9]—why, for a given discrete velocity set, does
one get the same lattice constant and weights under different
schemes, even under different theories?

3. Application
Since the pGHQ scheme offers a series of HCES cov-

ering the full-range quadrature degree and supports all kinds
of lattices, a direct application is to construct optimal lattices,
which restores the same moment degree with the smallest dis-
crete velocity set. In terms of the pGHQ scheme, given an
nth-order moment degree on-node ED discretization, it is to
construct a discrete velocity set {v0, . . . ,vq−1} with the small-
est q, whose q∼ (2n−q)th HCES has real-valued solution for
lattice constant c. The theoretically smallest number for q is
(n+1), which indicates that its corresponding abscissa poly-
nomial can be expressed as

W(n+1) (ξ ) =
1

2n+1 Hn+1 (ξ )+AnHn (ξ ) . (16)

Unfortunately, the mechanism of tuning the coefficient An to
generate desirable zeros, which can fit into nodes, is not clear.
Hence, the global optimal lattices are not available right now.
However, since the procedure of the pGHQ scheme is uni-
fied for both symmetric and asymmetric, and the core com-
putation is solving HCES which is a univariate polynomial
equation system, the pGHQ scheme is extremely suitable for
computers. Therefore, limiting the range of the discrete ve-
locity, a brute-force approach is available, which is to enu-
merate all of the possible discrete velocity sets and identify
their feasibilities. Here, we search the local optimal lattices on
[−10,10] for {n = 3,4,5,6,7} moment degree ED discretiza-

tion. The detailed procedures of searching local optimal lat-
tices on [−m,m] for un ED discretization are:

(I) set up q, start up with the theoretically smallest num-
ber q = n+1;

(II) enumerate all the possible q-point discrete velocity
sets on [−m,m];

(III) solve q∼ (2n−q)th HCES for each enumerated dis-
crete velocity set. Identify the set with real-valued c as feasible
lattices;

(IV) all the identified feasible sets are local optimal lat-
tices on [−m,m]. If there is no feasible lattice in the enumer-
ated sets, then increase q by 1, repeat steps (II)–(IV).

We find that all of these local optimal lattices keep the
symmetric form, {0,±v1, ...,±vn−1}. The local optimal ab-
scissa number q on [−10,10] has the relationship q = 2n− 1
with the moment degree n. To verify the feasibility of asym-
metric lattices, we continue our search with an extra point.
The search shows that for a given n moment degree ED dis-
cretization, the available lattices are extremely abundant. Tak-
ing n = 3 moment degree ED discretization as an instance, in
the range [−10,10], there are 20 5-point lattices (local optimal
lattices) whose discrete velocity set has the form {0,±v1,±v2}
and 34636 6-point lattices, where most of them are asymmet-
ric lattices. Table 1 lists the detailed statistics of our search.
As a detailed illustration of the local optimal lattices, Table 2
presents the most compact local optimal lattices on [−10,10]
for {n = 3,4,5,6,7}moment degree ED discretization, whose
discrete velocity is as close as possible to 0. To give a specific
display of the abundance of the available lattices, Tables 3 and
4 list several symmetric and asymmetric lattices of n = 3 mo-
ment degree ED discretization.

Table 1. Statistics of the available on-node lattices for {n = 3,4,5,6,7}
moment degree ED discretization on the interval [−10,10]. The local
optimal q, the total number of available local optimal lattices, and the
total number of available (q+1)-point lattices are respectively listed in
columns 2, 3, and 4 of the table.

Moment Local q-point (q+1)-point
degree un optimal q lattices lattices

3 5 20 34636
4 7 120 138715
5 9 112 244218
6 11 252 211863
7 13 112 82684

Table 2. The most compact local optimal on-node lattices on [−10,10] for {n = 3,4,5,6,7} moment degree ED discretization.

Moment degree un Lattices {v0,±v1, · · ·} Lattice constant c weights {w0,w1, · · ·}
3 {0,±1,±3} 1.1664 {6.3665×10−1, 1.8141×10−1, 2.6196×10−4}

5.5343×10−1 {7.4464×10−2, 4.1859×10−1, 4.4182×10−2}
4 {0,±1,±2,±3} 8.4639×10−1 {4.7667×10−1, 2.3391×10−1, 2.6938×10−2, 8.1213×10−4}
5 {0,±1,±2,±3,±5} 8.1321×10−1 {4.5814×10−1, 2.3734×10−1, 3.2325×10−2, 1.2641×10−3, 8.9773×10−7}

4.7942×10−1 {1.6724×10−1, 3.0315×10−1, 5.3303×10−2, 5.7922×10−2, 2.0013×10−3}
6 {0,±1,±2,±3,±4,±5} 6.8590×10−1 {3.8694×10−1, 2.4178×10−1, 5.8922×10−2, 5.6153×10−3, 2.0652×10−4, 3.2745×10−6}
7 {0,±1,±2,±3,±4,±5,±7} 6.6344×10−1 {3.7428×10−1, 2.4105×10−1, 6.4343×10−2, 7.1316×10−3, 3.2523×10−4, 6.6163×10−6, 3.0509×10−9}

4.3240×10−1 {2.0928×10−1, 2.3312×10−1, 9.4051×10−2, 5.6923×10−2, 7.5008×10−3, 3.7006×10−3, 6.0784×10−5}
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Table 3. All the available local optimal on-node lattices for n = 3 moment degree ED discretization on the interval [−5,5]. All feasible
discrete velocity sets keep the symmetric form, {0,±v1,±v2}. The vα and −vα share the same weight wα . Each feasible lattice has two lattice
constants. To save space, the two lattice constants c and their corresponding weights {w0,w1,w2} are denoted by the symbols ∓ and ±. The
rational form is kept for comparison with the existing ED discretizations.

{0,±v1,±v2} c w0 w1 w2

{0,±1,±3}
√(

5∓
√

10
)
/
√

6 4
(
4∓
√

10
)
/45 3

(
8±
√

10
)
/80

(
16±5

√
10
)
/720

{0,±1,±4}
√

51∓
√

1641/8
(

93∓17
√

1641
)
/1200

(
1959±29

√
1641

)
/4500

(
933±23

√
1641

)
/36000

{0,±1,±5}
√

39∓
√

1146/5
√

2
(
−528∓52

√
1146

)
/1875

(
2208±47

√
1146

)
/3600

(
2472±73

√
1146

)
/90000

{0,±2,±5}
√

87∓
√

1569/20
(
3477∓29

√
1569

)
/7500

(
3153±19

√
1569

)
/12600

(
2829±67

√
1569

)
/157500

Table 4. The available asymmetric on-node lattices for n = 3 moment degree ED discretization.

{v0,v1, ...,v5} c w0 w1 w2 w3 w4 w5

{−5,−2,−1,1,2,4} 0.381641 0.019568 0.302751 0.094520 0.505439 0.009237 0.068487
{−4,−3,−1,1,2,4} 0.450877 0.016717 0.054744 0.451349 0.323613 0.127736 0.025841
{−3,−1,0,1,2,4} 0.521696 0.059199 0.366034 0.198867 0.227904 0.138130 0.009866
{−3,−1,0,1,2,5} 0.553432 0.076212 0.294489 0.352957 0.040448 0.232265 0.003629

4. Implication

A direct implication of lattices abundance is its im-
pact on the positivity of equilibrium distribution; i.e., the
range of macro velocity on which all equilibrium distribu-
tions remains positive. Because a negative equilibrium dis-
tribution violates the physical nature of particle kinetics,
the positivity is considered as a major factor for the nu-
merical stability of the LB method. We have analyzed lat-
tices {0,±1}, {0,±2,±5}, {0,±1,±3}, {0,±1,±2,±3},
{0,±1,±2,±3,±5}, and {0,±1,±2,±3,±4,±5}. For lat-
tices {0,±2,±5}, {0,±1,±3}, {0,±1,±2,±3,±5} have two
feasible lattice constants c, we take the c with a wider pos-
itivity. The analysis shows that lattice {0,±2,±5} has the
widest positivity though its retained moment degree is only u3.
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. . .

intersections with U axis

f
e
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Fig. 1. The profiles of first-going-negative equilibrium distributions f eq
α as a

function of U . The figure only renders the positive U-axis. Since all lattices
in the figure are symmetric, the positivity on the negative U-axis is the same
though the corresponding vα turns to −vα . The line with symbol H is for
f eq
α with vα = 0 and c = 1/

√
2RT = 1.2247 which, as U increases, first goes

negative in all equilibrium distributions of {0,±1}; � is for vα = −5 and
c = 0.3442 in {0,±2,±5}; J is for vα =−3 and c = 0.5534 in {0,±1,±3};
� is for vα = −2 and c = 0.8464 in {0,±1,±2,±3}; N is for vα = −5
and c = 0.4794 in {0,±1,±2,±3,±5}; • is for vα = −3 and c = 0.6859
in {0,±1,±2,±3,±4,±5}. The inner panel renders their intersections with
the U-axis, above which the f eq

α will become negative. The specific values of
intersections for {H,�,J,�,N,•} are∼{0.82, 1.70, 1.15, 0.76, 1.25, 0.98}.
Since the plotted f eq

α curves are the first-going-negative equilibrium distribu-
tions, then the inner panel demonstrates the lattices positivity range of U .

Meanwhile, the positivity of the highest retaining-moment-
degree lattice {0,±1,±2,±3,±4,±5} is merely better than
{0,±1} and {0,±1,±2,±3}. To demonstrate it, figure 1
plots their equilibrium distributions which firstly go negative
as the macro velocity increases. The asymmetric lattice also
demonstrates its capability on modifying the positivity on a
specific range of U . Figure 2 plots a comparison of lat-
tices {−5,−2,−1,1,2,4} and {0,±2,±5}. This shows that
the lattice {−5,−2,−1,1,2,4} shifts the positivity range of
{0,±2,±5} left with approximatively −0.5 on the U-axis.
This analysis indicates that the discrete velocity set could be a
significant impact to the numerical stability of LB method. It
offers a direction to improve LB numerical stability. Our iden-
tified lattices also offer a database for further study. However,
a detailed investigation is beyond the scope of this paper and
shall be addressed in a separate publication.
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Fig. 2. The profiles of equilibrium distributions f eq
α as a function of

U : (a) lattice {−5,−2,−1,1,2,4} with a lattice constant c = 0.3816;
(b) lattice {0,±2,±5} with a lattice constant c = 0.3442. The label on
a curve is its corresponding vα . The intervals of U between vertical
dashed lines are lattices positivity ranges.

5. Conclusion
We propose a new mathematical tool, pGHQ, to construct

on-node LB lattices under a Cartesian coordinate system in
this paper. To the best of our knowledge, this is the first time
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to derive and employ this mathematical tool in the context of
the LB method. The pGHQ is general. It can be extended into
the entropic LB model, even though it was first proposed for
the Hermite polynomial expansion theory. The pGHQ scheme
avoids the tedious QES solving. Compared with the exist-
ing classical approaches, our scheme has the following advan-
tages: (i) the algorithm is extremely concise; (ii) the procedure
of constructing univariate polynomial equations is unified for
both symmetric and asymmetric lattices; and (iii) the gener-
ated univariate polynomial equation system covers full-range
quadrature degree of the given {v0, . . . ,vq−1}. We employ the
pGHQ scheme to search the local optimal and asymmetric lat-
tices on [−10,10] for {n = 3,4,5,6,7} moment degree ED
discretization. The search reveals a surprising abundance of
available lattices. Our brief analysis shows that the discrete
velocity set is significant to the positivity of equilibrium dis-
tribution, which is one major impact to the numerical stability
of LB method. Hence, the results of the pGHQ scheme lay a
foundation for further investigation to improve the numerical
stability of the LB method by modifying the discrete velocity

set.
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