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A generalized image charge formulation is proposed for the Green’s function of a core-shell dielectric
nanoparticle for which theoretical and simulation investigations are rarely reported due to the difficulty of
resolving thedielectricheterogeneity.Basedon the formulation,anefficient andaccuratealgorithmisdeveloped
for calculating electrostatic polarization charges of mobile ions, allowing us to study related physical systems
using theMonteCarlo algorithm. The computer simulations show that a fine-tuning of the shell thickness or the
ion-interfacecorrelation strengthcangreatly alter electricdouble-layer structures andcapacitances, owing to the
complicated interplay between dielectric boundary effects and ion-interface correlations.
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Core-shell structured nanoparticles (NPs) refer to inner
cores surrounded by outer materials as shells, with a total
size between 1 and 100 nm. They have been utilized for
numerous applications in physical chemistry, biomedical
engineering [1], and energy storage devices [2,3]. In these
applications, the core-shell NPs are often favored in
comparison with classical homogeneous NPs, since various
preferable physical properties can be achieved due to the
core-shell architecture, such as extraordinary robustness
[4], higher energy storage capability [5], and enhanced
optical effects [6]. The core-shell structures have been
found to play an important role in the NP’s self-assembly,
and thus is useful for synthesis of new materials [7]. In the
field of electrochemical supercapacitors, excellent perfor-
mance of core-shell structured dielectric nanomaterials has
motivated many experiments [8–10] to widely investigate
effects of different properties of core-shell NPs.
Dielectric properties are of great importance since

dielectric constants for different materials can range in a
large interval from 2–12 (e.g., organic polymers) to 100–
10 000 (e.g., dielectric ceramics). These properties have
attracted broad attention in vast applications, e.g., air-
electrolyte interface and colloidal science [11,12], in
addition to the field of electric double-layer (EDL) capac-
itors where high-dielectric metal electrodes are often used.
In addition, the electronic polarization on surfaces plays an
essential role for various electrode materials [13–15], for
which particle simulations to account for charge fluctua-
tions [16,17] on the electrode are computationally inten-
sive. Dielectric effects for a single planar surface were well
studied [18,19] since the image-charge method (ICM) can
be easily employed. However, core-shell dielectric struc-
tures are not well understood in theory in spite of abundant
experiments in literature [1,3,20]. The presence of multiple
dielectric interfaces leads to a great challenge in the
numerical approximation of ion-ion interactions, because
a 3D Poisson’s equation has to be solved in order to obtain

polarization charges induced on the interfaces. Proper
treatments for multilayered dielectric effects of spheres
have rarely appeared in the literature since the last well-
established theory for layered dielectric spheres derived by
Lindell et al. [21]. Simulation techniques [12,22–25] have
made great progress for heterogeneous dielectric media, but
applications to the core-shell structure for a satisfactory
accuracy remain challenging.
In this Letter, we first develop a generalized ICM for the

Green’s function in the use of Monte Carlo (MC) methods
for simulating the ion structure around a core-shell dielec-
tric NP, which can efficiently calculate the polarization
contribution. Applying the ICM, we show that the self-
energy profile of a single ion outside a core-shell NP can be
qualitatively different from the dielectrically homogeneous
case even for a thin shell thickness. The effect of polari-
zation charges on ionic distributions and EDL capacitances
is further explored through MC simulations which dem-
onstrate that, by fine-tuning the shell thickness and the ion-
interface correlation strength, the polarization charges can
greatly alter EDL structures and capacitances of the system.
As explained below, we attribute enhanced EDL capaci-
tances to dielectric boundary attractions and strong corre-
lations between ions in the electrolyte and partial charges
on the interface.
The Green’s functionGðr; r0Þ for a medium composed of

a dielectric core-shell NP of radius R and the solvent is
described by the Poisson’s equation,

−∇ · ηðrÞ∇Gðr; r0Þ ¼ 4πδðr − r0Þ; ð1Þ

where ηðrÞ ¼ εðrÞ=εw characterizes the relative dielectric
function which is piecewise constant. Here, εðrÞ is material
specific and εw is that of the solvent. Suppose the radius of
the core and the thickness of the shell are Rc ¼ ð1 − θÞR
and Rs ¼ θR, respectively, then the value of η takes ηc
within the core, ηs in the shell layer, and 1 in the solvent.
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In the following discussion, we use two opposite combi-
nations of dielectric constants: ðηc; ηsÞ ¼ ð10; 0.1Þ for the
dielectric high-core low-shell particle (HCP) and ðηc; ηsÞ ¼
ð0.02; 10Þ for the dielectric low-core high-shell particle
(LCP).
The dielectric effect due to the core-shell structure turns

out to be physically interesting even when only a single ion
is present. In Fig. 1(a), we plot the self-energy of a cation
with valence z ¼ 1 near a HCP for different shell thick-
nesses as a function of the distance of the source from the
surface d ¼ r0 − R, where the self-energy is defined as
1
2
z2lBGpolðr0; r0Þ, with Gpol given later in Eq. (2), and the

coupling parameter lB ¼ e2=ð4πε0εwkBTÞ is the Bjerrum
length of the solvent with the elementary charge e, the
vacuum permittivity ε0, the Boltzmann constant kB, and
temperature T. At short range from the surface, the
qualitative change in self-energy profiles between θ ¼ 0
and 0.01 indicates a discontinuous transition from attrac-
tion into repulsion, which shows a clear dominance of the
coated shell material over the core material even though the
shell is very thin. This phenomenon can be understood
from the asymptotics of Gpol as d ≪ R by using the Mellin
transform. As θ increases from zero to a positive value, the
leading asymptotics changes from an image point to an
image dipole with an opposite sign (details shown in
Supplemental Material [26]). When the ion is at a long
distance from the surface, the ion-NP interaction turns
continuously from attraction into repulsion with the

increase of θ, which is also in agreement with the
asymptotic analysis [26]. At a certain thickness [in
Fig. 1(a) when θ ¼ 0.01], the nonmonotonic behavior is
observed, which is explained as the competition between
the core attraction and shell repulsion. This competition
could further influence the intrinsic EDL structure and
related physical properties when the NP is immersed in an
electrolyte (Fig. 2). The calculation of the interaction
energy between two ions, a test ion and an interfacial
ion, which are collinear with the center of the NP, also
shows the great discrepancy for different shell thicknesses
and stronger interactions for larger θ [see Fig. 1(b)]. This
discrepancy will certainly modify the EDL structure and
macroscopic properties of core-shell NP systems.
The Green’s function Eq. (1) is solved by constructing a

generalized image charge formula. To start, one solves the
Green’s function by the spherical harmonic expansion as
Gðr; r0Þ ¼ 1=jr − r0j þGpolðr; r0Þ, where the polarization
contribution is

Gpolðr; r0Þ ¼
R
r0
X∞
n¼0

rnK
rnþ1

PnðcosφÞMðnÞ; ð2Þ

MðnÞ ¼ S0ðnÞ þ S1ðnÞ; ð3Þ
where rK ¼ R2=r0 denotes the radial position of the Kelvin
point along r0, Pnð·Þ is a Legendre polynomial of order n, φ
is the angle of r and r0, and S0ðnÞ¼ð1−ηsÞn=½ð1þηsÞnþ1�
is the regular solution for a NP with a uniform dielectric
constant [28]. S1ðnÞ takes into account the effect of
dielectric nonuniformity, and thus is a function of ηs and ηc:

S1ðnÞ ¼ −
ηsnð2nþ1Þ2

½ð1þηsÞnþ1�½ðηcþηsÞnþηs� ð1 − θÞ2nþ1

ð1þηsÞnþ1

ηc−ηs
− ð1−ηsÞnðnþ1Þ

ðηcþηsÞnþηs
ð1 − θÞ2nþ1

: ð4Þ

Equation (2) has a slow convergence rate when a charge
is close to the interface, and will not provide a rapid
algorithm for the MC simulation of NP systems. To avoid
the use of it, the image charge expression can be invoked by
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FIG. 1. Self-energy of a cation (a) and interaction energy
between a cation and an interfacial anion (b) which are collinear
with the NP center, in the presence of a HCP for different shell
thicknesses. Energy unit ðlB=RÞkBT.
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FIG. 2. With a given surface charge density σ ¼ −10e=ð4πR2Þ
and correlation strength ν ¼ 0.1, RDFs of counterions versus
dimensionless positions with different shell thicknesses are
shown in (a) for the HCP and (b) for the LCP.
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introducing the Mellin transform, MðnÞ ¼ R
1
0 NðtÞtn−1dt,

where the harmonic coefficient MðnÞ is continued into a
function over the complex plane and its inverse Mellin
transform converts Gpol into an integral form. With NðtÞ
solved, the expression is

Gpol ¼
R
r0

Z
1

0

NðtÞ
X∞
n¼0

rnKt
n−1

rnþ1
PnðcosφÞdt

¼
Z

rK

0

dx
ρðxÞ
jr − xj ; ð5Þ

with a line charge density ρðxÞ ¼ Nðx=rKÞ=ðRx=rKÞ. In the
case of a NP with a uniform dielectric constant η, i.e., the
limit of S1ðnÞ ¼ 0 and η≡ ηs, this transformation gives
the well-known solution of the Neumann image principle
[29,30],

GS1→0
pol ¼ 1 − ηs

1þ ηs

rK
Rjr − rKj

−
1 − ηs

ð1þ ηsÞ2R
Z

rK

0

ðx=rKÞ−ηs=ð1þηsÞ

jr − xj dx; ð6Þ

which removes the difficulty of the slow convergence of
spherical harmonic series [Eq. (2)] by discretizing the line
integral [31].
Unfortunately, no analytical inverse Mellin transforma-

tion for S1ðnÞ is available. The Padé approximation is
employed as S1ðnÞ ≈ ~S1ðP; nÞ and

~S1ðP; nÞ ¼ α0 þ
XP−1
i¼0

pini
��

nP þ
XP−1
i¼0

qini
�
; ð7Þ

where constant coefficients α0 and pi, qi (i ¼ 0;…; P − 1)
are then determined by the nonlinear least-squares method
following the idea proposed in a multiscale model of
electrolytes using the Poisson-Boltzmann equation [32].
A larger P corresponds to a higher accuracy in the Padé
approximation. The inverse Mellin transform for rational
polynomial ~S1ðP; nÞ is obtained analytically, which gives
an approximate image potential,

~Gpol ¼
Z

rK

0

dx
~Nðx=rKÞ=ðRx=rKÞ

jr − xj ; ð8Þ

with ~Nðx=rKÞ being an approximation of Nðx=rKÞ. The
Green’s function can now be well approximated by a
summed contribution of the source charge and point image
charges after applying numerical integration (e.g., Gauss-
Legendre or Gauss-Radau) [31] to the line integral,
~Gðr; r0Þ ¼ 1=jr − r0j þP

M
m¼1 ρ

0
m=jr − xmj with a small

number M. The locations xm and strengths ρ0m of image
point charges all explicitly depend on the source charge
location r0. In comparison with the direct calculation of
the harmonic series Eq. (2), the ICM at the same level of
accuracy can achieve the speed-up for ∼50 times, as

demonstrated in Supplemental Material [26]. Compared
to grid-based methods such as the boundary element
method, the ICM has natural merit since it avoids solving
a linear algebraic system, which becomes increasingly ill
conditioned when ions approach the interface.
With the ICM, we implement the standard canonical-

ensemble MC algorithm for the primitive-model electrolyte
within a Wigner-Seitz spherical cell [33], where a core-
shell structured NP is located at the center. The ICM is used
to calculate interactions between ions in the electrolyte,
which depend on the position of the NP. We take a binary
electrolyte with monovalent salt. The NP has a total surface
charge Q ¼ �νeNs modeled as Ns discrete point charges
�νe distributed on the surface, which are mobile and
confined on the surface [34]. The Hamiltonian of the
system is expressed as the sum of interactions among
all ions and surface charges zizjlBGðri; rjÞ (zi ¼ �ν
for surface charges), the self-energies of mobile ions
1
2
z2i lBGpolðri; riÞ, the hard-core repulsion energy among

all ions and electrolyte boundaries, and the potential used to
confine those discrete charges on the surface.
The above model describes a prototypical system of a

dielectric core-shell NP immersed in electrolyte. The sur-
face-charge model with discrete and mobile interfacial ions
captures the strong coupling between surface charges and
mobile ions, for which the significant contribution to the
Hamiltonian is indicated in Fig. 1(b). The importance of
surface-charge discreteness has been known for decades
[35,36]. For systems with dielectric interfaces, it can go
much beyond the uniform surface-charge model in provid-
ing the correct prediction as the polarization charge
modifies the binding energy of EDL ions [37]. In the
model, the parameter ν is used to phenomenologically
depict the strength of the short-range electrostatic correla-
tion between the surface charges and counterions [38]. This
parameter can either represent the valence of chemical
groups on colloidal surfaces or represent the coarsened
partial electronic charges localized on the NP. In electro-
chemical materials, the fluctuation of the charge distribu-
tion on the electrode screens the ion-ion interaction and it is
reported to play an essential role predicting correct EDL
capacitances [13–15,39]. Thus, the fluctuation surface-
charge model with parameter ν is expected to mimic many
physical systems that the uniform or fixed surface-charge
models cannot reach.
In all simulations, the radius of the simulation cell takes

2.5R, with radii of mobile ions aþ ¼ 0.05R, a−¼0.075R
and the Bjerrum length lB ¼ 0.5R. The coion volume
fraction of the Wigner-Seitz cell is fixed as 15.1ðacoion=RÞ3,
while the number of counterions placed in the electrolyte is
given by the electroneutrality constraint. We investigate
both the HCP and LCP for different shell thickness
θ ¼ 0–0.05 and correlation parameter ν ¼ 0.1–0.5. The
size of the NP chosen in simulations is R ¼ 4 nm,
corresponding to a physical condition of bulk salt
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concentration 100 mM and Debye length lD ¼ 5.75 Å in
dimensional units.
To emphasize the important role of the shell, Fig. 2

shows normalized radial distribution functions (RDFs) of
counterions for cases of the HCP and LCP with the fixed
surface charge density and correlation strength for varying
shell thicknesses. EDL structures of both cases are signifi-
cantly different. For the HCP, the high-dielectric core
provides an additional attraction to mobile ions; thus,
the counterion density is very high without the shell layer,
and decreases with the increase of the shell thickness due to
the low-dielectric shell material. In the case of LCP, the
core layer could lead to a depletion force to counterions, but
due to the high-dielectric shell, which provides a local
attraction to ions, the depletion zone vanishes with the
increase of θ. The change in the magnitude of the RDF
profile is decreasing as the increase of θ, and the structure
of the EDL becomes less sensitive to the dielectric
inhomogeneity if the shell is sufficiently thick.
One potentially important application of the core-shell

NPs lies in the electrochemical capacitance, which can be
viewed as a series combination of a quantum capacitance of
the electrode and an EDL capacitance [40]. The quantum
capacitance depends on the electron density of states in the
electrode and can be described by the self-consistent
relations between the electron density and the potential
by electronic structure calculation, which is beyond the
scope of this work. In a recent experiment, Ji et al. [41]
studied layered electrodes with the graphene layers coated
on the PMMA substrate, and observed that the EDL
capacitance near the graphene electrode extremely depends
on the number of graphene layers and the single-layer
graphene maximizes the capacitance, and this abnormal
enhancement is attributed to the correlation between
electrode charges and electrolyte ions. We use the afore-
mentioned core-shell NP system with the mobile surface-
charge model with varying surface-charge strength ν,
which represents both the integrated electronic charges
[17] and the depth of them buried in the electrode. A larger
ν then corresponds to smaller number of graphene layers.
This simplification allows us with the first attempt to
investigate the effect of core-shell structured dielectric
inhomogeneity on the EDL capacitance through simula-
tions. We measure the relative surface differential capaci-
tance C=C0 with C ¼ dσ=dVs, where Vs is the surface
potential of the NP. C0 is the capacitance obtained by the
mean-field Gouy-Chapman-Stern theory in the linear
regime, i.e., under the approximation of sufficient low
Vs and sinhðβeVsÞ ≈ βeVs, with β ¼ 1=ðkBTÞ:

C0 ¼
εwε0½1þ κðRþ dÞ�

Rð1þ κdÞ : ð9Þ

Here, κ is the inverse Debye length and d ¼ aþ is the Stern
layer thickness. Capacitances for different θ but with fixed
ν ¼ 0.1 versus surface potentials are presented in Figs. 3(a)

and 3(b) to illustrate the results for the shell thickness θ
from 0 to 0.05. It is observed that increasing θ leads to a
decrease of capacitances for HCP [Fig. 3(a)] and an
increase for LCP [Fig. 3(b)], respectively, indicating that
dielectric boundary attractions enhance capacitances in
agreement with the discussion in Ref. [39], and high-ε
materials usually lead to high energy storage capabilities.
The effect of the ion-interface correlation strength on the

capacitance is also investigated by tuning the parameter ν
from 0.1 to 0.5. A larger ν corresponds to stronger
correlations between surface charges and counterions,
which leads to tighter binding of counterions to the
surface, narrowing the electric double layer and generally
increasing the capacitance. Figures 3(c) and 3(d) show
the calculation of the enhancement percentage of capaci-
tances defined as ðCν¼0.5 − Cν¼0.1Þ=Cν¼0.1. For the HCP
[Fig. 3(c)], the capacitance improvement turns out to be
more obvious for larger θ since the interaction energy
between an ion and a surface charge becomes larger
[Fig. 1(b)]. In contrast, for a LCP [Fig. 3(d)], the maximal
capacitance improvement happens at θ ¼ 0 when the ion-
interfacial charge interaction is maximum. In both cases, we
can draw the conclusion that stronger mobile ion-interfacial
charge correlations do lead to more significant capacitance
improvements. This is in agreement with experimental
observations for electrodes with layered materials [41].
In summary, we have developed a general ICM, enabling

accurate and efficient simulations for a dielectric core-shell
structured NP immersed in an electrolyte. We incorporate
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FIG. 3. Scaled differential capacitances versus dimensionless
surface potentials with different shell thicknesses θ ¼ 0–0.05 and
a fixed correlation strength ν ¼ 0.1 are shown in (a) for the HCP
and (b) for the LCP; the relative enhancements of differential
capacitance from ν ¼ 0.1–0.5 versus dimensionless surface
densities with different shell thicknesses θ ¼ 0–0.05 are shown
in (c) for the HCP and (d) for the LCP.
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our method into MC simulations and explore the core-shell
structured dielectric boundary effects on EDL structures
and capacitances, which, in general, show that dielectric
boundary attractions and strong correlations between
mobile ions and interfacial charges enhance EDL capac-
itances. It is also demonstrated that these phenomena can be
well explained by our analysis on self-energy and inter-
action energy profiles. The approach can be generalized to
(a) systems with multilayers or dielectric functions if the
Poisson’s equation can be solved with spherical harmonic
expansions and (b) systems with multiple core-shell NPs by
incorporation with the hybrid method of images and
moments [22]. Both cases will be the topic of our future
studies. Finally, based on this work, it is now possible to
quantitatively study dielectric effects for dielectrically
inhomogeneous NPs, which may help shed light on the
mechanisms of existing experimental observations and
direct the design of energy storage devices made of
core-shell structured NPs.
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